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i

“Probability is expectation founded upon partial knowledge. A perfect acquaintance

with all the circumstances affecting the occurrence of an event would change

expectation into certainty, and leave nether room nor demand for a theory of

probabilities.”

George Boole
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Abstract

Alexander Cowen-Rivers

Neural Variational Inference For Embedding Knowledge

Graphs

Statistical relational learning investigates the development of tools to study

graph-structured data. In this thesis, we provide an introduction on how models

of the world are learnt using knowledge graphs of known facts of information,

later applied to infer new facts about the world. Current state-of-the-art

methods are unable to quantify and control their inherent uncertainties. This

inability is a significant problem: within specific domains inferred relations could

entail enormous consequences. There has been a shortage of literature around

the topic of modelling knowledge graphs through probabilistic embeddings,

and even less exploration into embedding knowledge graphs using variational

inference. One of the hindering factors is creating methods that are highly

scalable, due to the number of possible connections in a knowledge graph growing

exponentially with each additional node or relation. Traditional knowledge

graph embeddings have used static vector representations, whereas we would

like access to more expressive generative models. However, this expressiveness

comes at the cost of the complexity in performing fast and accurate inference

over the parameters. This paper proposes a novel framework, which can be

used to create several generative models: first to approach the difficulty of

objects and relationships having multiple meanings and second to aid with the

development of tools to quantify uncertainty in facts. The new framework can

create models able to discover underlying probabilistic semantics for entities or

relations; this is achieved by utilising parameterisable distributions over entities

and relations which permit training by back-propagation in the context of neural

variational inference, resulting in a highly-scalable method. Our generative

framework is flexible enough to allow training under any prior distribution that

permits a re-parametrisation trick, as well as under any scoring function that

permits maximum likelihood estimation of the parameters. Experiment results
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display the potential and efficiency of this framework by improving upon multi-

relational generative and non-generative benchmarks, whereby some datasets are

so challenging that even state-of-the-art models do not exceed 50% performance.
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Chapter 1

Introduction

This Chapter gives an introduction to the project. Section 1.1 justifies the

relevance of this study to the broader field of statistical relational learning.

Section 1.2 states the research questions we attempted to answer in this project.

Section 1.3 details the computational resources available to investigate these

research questions. Section 1.4 details the code used to aid the project’s progress,

as well as the public repository of the projects work. Furthermore, Section 1.5

outlines the content of this report.

1.1 Motivation

Traditional machine learning methods take a feature matrix as input, which

represents the examples as categorical (binary one hot encoded) or numeric

features. Recent machine learning methods can take the raw examples as

input. Both traditional and recent methods share the same primary goal

of learning to infer the correct output/prediction from their input. These

can fall into a variety of tasks such as; regression, classification, unsupervised

representation learning. For a regression task, the output would be a score. For a

classification task, the output would be a class label. For an unsupervised learning

problem, the output would be a cluster assignment of similar representations,

or a latent (hidden) representation of the input, such as word embeddings.

Statistical Relational Learning involves the input being a representation of the

relations between objects. This form of input can be directly visualised as a

graph, where the nodes of information, referred to as entities, and the labelled

directed/undirected edges are relationships between entities. The primary tasks

in statistical relational learning include graph completion (predicting unknown

edges), prediction of properties of nodes, as well as grouping nodes together

based on their inter-connectivity. These tasks are used in domains such as



Chapter 1. Introduction 2

the analysis of communication networks, automatically extracting interpretable

information from scientific articles [Muzaffar, Azam, and Qamar, 2015,Plake

et al., 2006] and drug discovery [Sellwood et al., 2018,Fujiwara, Kamada, and

Okuno, 2018]. The methods developed by statistical relation learning researchers

can be applied to large-scale knowledge graphs, which store factual information

through relationships (edges) between entities (nodes). Several knowledge

graphs have been created, such as UMLS [Bodenreider, 2004], Kinship [Quinlan,

1989], WN18RR [Dettmers et al., 2017] and FB15k-237 [Toutanova and Chen,

2015a]. Modern knowledge graphs can contain millions of nodes and billions

of connections,1 which forces us to develop highly scalable methods, which, at

worst, have time/space complexity linear in the number of nodes in the graph.

During link prediction, a model attempts to infer the relationship between

entities in the system, which is a crucial challenge. Many artificial intelligence

researchers strive towards creating systems capable of inferring novel and useful

information, as this is important to any self-improving system, as well as

to a system with the goal of aiding human progression. How, then, can we

create systems capable of inferring novel and useful information? The previous

question is the cardinal focus of attention for many researchers working on

machine learning. This direction motivates experimenting with knowledge graph

representations. However, these tools commonly lack the language of uncertainty,

i.e. when the system is uncertain regarding its output. [Ghahramani, 2015,Gal,

2016] argue that uncertainty is of vital importance to be utilised by a system,

and be informed of by an interpreter of the system.

Knowledge graph researchers have debated the challenges of multiple relation

semantics, while none have discussed the problems of multiple relation and

multiple entity semantics. By modelling a knowledge graph, we typically try

to create clusters around similar relationships and underlying semantics. For

example; there exist two latent semantics of the ’has part’ relation. The relation

’has part’ contains both location and composition relationships as ”France is a

part of Europe” and ”lead is a part of a pencil”. Entities can also have multiple

latent meanings such as the verb ’set’. We may want the representation for ’set’

to occupy the latent semantic space associated with mathematics and set theory.

However, we would also desire that the object ’set’ share semantic space with

tangible objects, e.g. ”set the flowers on the table”, or configurable objects,

e.g. ”set the watch”. A model capable of representing these various semantic

meanings should, in theory, be able to better cope with the ambiguity induced

1https://medium.com/@Pinterest Engineering/pinsage-a-new-graph-convolutional[..]

https://medium.com/@Pinterest_Engineering/pinsage-a-new-graph-convolutional-neural-network-for-web-scale-recommender-systems-88795a107f48
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in language and knowledge, where ambiguity can be defined as a mixture over

semantic relationships. The freedom to occupy numerous semantic spaces can

be represented well with a probabilistic model of objects and relationships.

We now further motivate the desire to develop a probabilistic perspective on these

representations. Measuring uncertainty is essential for the following example.

If funding were available for only one research group to create a cure to a rare

disease, we would want to invest in the correct research direction. To correctly

spend, we may wish to simulate the disease to try and predict the likelihood

of the various methods leading to a successful cure. To simulate this, we may

create a knowledge graph model of known protein interactions, with the aim of

predicting a reaction relationship between the proteins observed in the disease

and potential cures. But what if the system had never observed the particle

formations seen in this disease, how would the model react? When maintaining

a probabilistic model, we can identify during the output stage that this is a new

example and thus the model knows it will have relatively low confidence in the

outcome. If we did not have this, it could lead to the wrong investment decision.

This case is formally referred to as an out-of-distribution test example. Thus

the ideal model would still attempt to predict the relationship between moving

particles.

However, it would quantify its uncertainty in the information and display this

alongside the output. The two main types of uncertainty are aleatoric and

epistemic uncertainty. Aleatoric uncertainty is usually found due to noisy data,

possibly caused by the imprecision of the measurement apparatus. Epistemic

uncertainty usually arises from parameter uncertainty, i.e. which combination of

parameters provides the more robust selection for a well-generalising model, as

well as structure uncertainty, arising from choices of various model structures,

such a depth of layers, latent embedding dimensions.

When we combine both aleatoric and epistemic uncertainty, we get predictive

uncertainty. It is predictive uncertainty we use to quantify the confidence of the

output from our model predictions. Through training our model, if we observe

that predictive uncertainty is either over confident or under confident, this can

guide us towards useful remedies. In the under-confident case, this could be due

to a lack of diverse data as discussed previously.

Bayesian machine learning researchers choose to investigate through the lens

of probabilistic models, with an emphasis on quantifying uncertainty. They

tend to use models that express the frequent and less frequent behaviour of the

observations. Thus allowing the modeller to view the confidence bounds when
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an automated system is about to take a series of decisions, especially useful

when these have low confidence. More generally, using a Bayesian modelling

framework allows the modeller to ask significant questions such as ”Was that

output nearly a random decision, or a well-supported estimate?” and ”Is my

data lacking the variety required for a confident model?”. We believe these

questions motivate our desire to encourage knowledge graph researchers to create

robust probabilistic systems which reflect these desirable characteristics.

The main argument of this thesis is that there is a lack of methods for quantifying

predictive uncertainty in a knowledge graph embedding representation, which can

only be utilised using probabilistic modelling, as well as a lack of expressiveness

under fixed-point representations. This constitutes a significant contribution to

the existing literature because we introduce a framework for creating a family of

highly scalable probabilistic models for knowledge graph representation, in a

field where there has been a lack of this. We do this in the context of recent

advances in variational inference, allowing the use of any prior distribution that

permits a re-parametrisation trick, as well as any scoring function which permits

maximum likelihood estimation of the parameters.

1.2 Problem Statement

Amongst the research activity of knowledge graph construction and link predic-

tion, the fundamental questions we wish to address in this thesis are:

1. Firstly, can we propose an alternative neural approach to Knowledge Graph

representation and link prediction that allows us to identify better and

measure predictive uncertainty?

2. Secondly, can we incorporate previous work within stochastic variational

inference to scale these robust representations to work on large graph

structures?

3. Lastly, can we better address the challenge of entities and relations that

require multiple representations?

We will aim to answer these critical questions in parallel, and hope it will lead

us towards a method which is highly scalable, efficient and robust. During this

dissertation, we also answer other research questions such as;

1. What can we learn from analysing the variances?
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2. What are the trade-offs for representing Knowledge Bases under this

alternative framework?

1.3 Computational Resources

Fortunately, we had access to the University College London’s computer science

cluster which has CPU and GPU nodes. We also had access to an Apple

MacBook Air 13 A1369 Core I5 4GB Ram 128GB SSD laptop. The MacBook

was used for simple experiments and analysis but quickly become redundant

with the introduction of more extensive datasets and the implementation of

more sophisticated models.

1.4 Code

There were four external sources of code we found useful. These were: (i) code

from the UCL MR groups public GitHub2 used to evaluate the models; (ii) code

from [Miao, Yu, and Blunsom, 2016], available also on Github3 as a template

for neural variational inference in tensorflow; and (iii) Dr Pasquale Minervini

from the UCL Machine Reading lab had shared some private code on Github to

load and process the datasets. However, Model A and Model B as introduced

later were completely and individually implemented by me. We have released

the code for this project on a public repository.4 The majority of the code

is written in Python 3.6 using the Tensorflow distributions framework [Abadi

et al., 2015,Dillon et al., 2017]. We also used code from a guide for using TF

distributions [Hafner, 2018].5

1.5 Thesis Outline

In the exploration of the challenges detailed previously, we have chosen to take

an experimental approach on large publicly available datasets.

2https://github.com/uclmr/inferbeddings
3https://github.com/carpedm20/variational-text-tensorflow
4https://github.com/acr42/Neural-Variational-Knowledge-Graphs
5https://danijar.com/building-variational-auto-encoders-in-tensorflow/

https://github.com/uclmr/inferbeddings
https://github.com/carpedm20/variational-text-tensorflow
https://github.com/acr42/Neural-Variational-Knowledge-Graphs
https://danijar.com/building-variational-auto-encoders-in-tensorflow/
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Background

Chapter 2 introduces relevant background information into neural methods and

the motivation for using variational inference, accompanied with an example

of variational matrix factorisation. Chapter 3 introduces relevant background

information on constructing datasets from knowledge graphs under various

assumptions, as well as the different categories of models used to complete

knowledge graph tasks. Chapter 4 identifies typical approaches to learning a

model of knowledge graphs. Chapter 5 discusses related work and identifying

how they differ from our approach.

Method

Chapter 6 outlines the theoretical justification for the two proposed generative

models from this thesis, as well as providing implementation details of each

model and the approaches used to scale the models to large datasets.

Experiment Analysis

Chapter 7 discusses the results from experiments over the model architectures

introduced in Chapter 6. Chapter 8 analyses the quality of the learnt embedding

distributions across a range of experiments as well as assessing two methods for

estimating the confidence of our generative models, finishing with an ablation

study on our best performing model.

Conclusion

Lastly, Chapter 9 explored the conjectures of our work and outlined future

research directions we believe to be the most fruitful.

1.6 Thesis Contributions

Through this thesis, we would like to encourage knowledge graph researchers

to step away from static vector representations in knowledge graphs and focus

research further on more expressive probabilistic generative representations. As
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a step towards this, we have proposed two novel generative models for multi-

relational knowledge graph completion, a domain where few generative models

have never been implemented. These generative models are also extremely flexi-

ble and enable the changing of scoring functions to any which allows maximum

likelihood estimation of the parameters, as well as any prior distributions which

would enable a re-parametrisation trick. Definite improvements on WN18 for

Variational ComplEX are seen compared with the initially published results.

Secondly, we have shown how to utilise the generative model to utilise uncer-

tainty estimates. Thirdly, we were able to improve with re-implementations of

previously published ComplEX results; Filtered Hits@1, and Filtered Hits@3

results on Kinship and UMLS, as well as improving upon ComplEX Filtered

Hits@1 results on Nations. Fourth, we provide an alternative justification for a

commonly used technique to estimate the Evidence Lower Bound using Bernoulli

sampling. We aim to submit this work to the International Conference on

Learning Representations 2019.
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Chapter 2

Neural Variational Methods

2.1 Outline

This chapter will assume only knowledge of basic algebra, probability and opti-

misation theory, but not of the specific areas the thesis builds upon. We will

give a brief snapshot of progress within neural methods, as well as introduce

the theory upon which the proposed models are reliant. Section 2.2 is a formal

introduction to the basics of Neural modelling and Section 2.3 a formal introduc-

tion to Bayesian neural modelling. Section 2.4 details the difficulties of Bayesian

methods, leading to a popular alternative technique: variational inference. Sec-

tion 2.5.2 introduces the key components to variational neural modelling, such

as the re-parametrisation trick. Section 2.7 discusses active learning, a technique

that can be applied to aid the learning process of a probabilistic system. Lastly,

Section 2.8 will walk through an example of variational matrix factorisation.

2.2 Neural Modelling

We will now introduce the reader to neural modelling, as this is key to under-

standing the complexities of a method fundamental to the contributions of this

thesis: neural variational methods. Machine learning has undergone a rebirth

since 2013 as Deep Learning [Goodfellow, Bengio, and Courville, 2016]. The

name ”deep learning” was chosen due to the deep architectures (stacked layers

of computations) used by many of the most successful machine learning models.

One of the most prominent models within the field of deep learning (DL) is the

neural network, categorically referred to as neural models. One of many areas

within computer science that have exponentially improved as a result of DL is

Machine Translation (MT); where MT entails the task of translating text from
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one language to another. All of the top performing model choices for the most

recent Machine Translation 2017 Shared Task [O, 2017], were DL models.

First, we will introduce the reader to a one layer neural network [Rumelhart,

Hinton, and Williams, 1988], arguably the simplest neural model. This model

has many similarities to logistic regression, and is commonly used to model the

probability of a random variable Y being assigned to two classes, e.g {−1, 1}.
Given a dataset of n examples D = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Where xi

is the observed information and ytruei is the true target label ”1”. We usually

partition D into D = (X,Y). We further partition this into Xtrain = {x : x ∈
Dtrain} and Ytrain = {y : y ∈ Dtrain}, similarly for Xtest and Ytest, with the

property that Ytrain ∩Ytest = ∅ and Y = Ytrain ∪Ytest, similarly for X. We

would then train on Xtrain,Ytrain and use Xtest,Ytest to measure our model

performance. Inference on our neural model is performed using the below

equation;

ypredictioni = P (xi = 1) = fw(xi) = Θ(b1 + W1xi) (2.1)

and,

ypredictioni = P (xi = −1) = (1− P (xi = 1)) = 1− fw(xi) = 1−Θ(b1 + W1xi)

(2.2)

Where Θ(x) = 1
1+e−x

.

We can think about training logistic regression simply as finding the best param-

eters b1, our bias, and W1, our weights, such that we minimise our prediction

loss L w.r.t W1 and b1, calculated through the negative log likelihood (NLL)

L(W1,b1) =
∑

i∈Dtrain −y
true
i log(ypredictioni ).

It is quite common to add a regularisation term into our loss function for better

generalisation onto Dtest. Regularisation can be added by including a scaled L2

norm of the parameter weights into the loss.

L(W1,b1) = (
∑

i∈Dtrain −y
true
i log(ypredictioni )) + λ1||W1||2

(2.3)

Where the weight decay λ1 is a hyperparameter that is tuned to maximise

performance. This neural model is typically trained through maximum likelihood

estimation, using optimisation techniques such as stochastic gradient descent.
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2.3 Bayesian Neural Modelling

We will now introduce Bayesian neural modelling, as this is the field which

inspired the creation of variational methods. A Bayesian network is formally

a directed graphical model, in which the joint distribution factorises into the

below, where is η the parameters for the posterior distribution, which generates

the variable X.

P (X) = P (X|η) (2.4)

Continuing with our neural model as described in Section 2.2, we will now

convert this into a Bayesian framework. The goal is now to find the parameters

w, which are likely to have generated the outputs y.

P (y|x,w) = G(fw(·), σ2) (2.5)

where σ2 is a parameter used to induce model precision, through corrupting

the output with variance σ2. Providing a dataset X, Y . We try to acquire an

accurate posterior distribution P (w|X, Y ) = P (Y |w,X)P (w)
P (Y |X)

.

Notice that to get P (Y |X), we have marginalised over w, hence,

P (Y |X) =

∫
P (Y |X,w)P (w)dw. (2.6)

Eq (2.6) is a critical component of the posterior distribution, as it normalises

all values to maintain fundamental properties. Eq (2.6) is often referred to as

model evidence.

The distribution P (w|X, Y ) contains the most likely parameter values w w.r.t.

the data X, Y . We can then use this distribution in order to perform inference

on a new dataset X∗, through the below equation.

P (Y∗|w,X∗, X, Y ) =

∫
P (Y∗|w,X∗)P (w|X, Y )dw. (2.7)
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For complicated models, such as deep neural models (with a considerable number

of parameters), the marginalisation calculation P (Y |X) within the posterior

distribution Eq (2.7) is computationally in-feasible (intractable).

2.4 Neural Variational Inference

We are now able to introduce neural variational methods. This section will

provide the theoretical background required to understand the contributions

of this thesis. Following on from the major obstacle identified in Bayesian

neural modelling where the true posterior P (w|X, Y ) in Eq (2.7) is intractable,

we define an approximation; a variational distribution qφ(w). This method is

referred to as Vartiational Bayes (VB). VB comes at the cost of confidence we

obtain from our predictions when using exact inference over the posterior. Hence

we can turn this into a minimisation problem w.r.t. θ using Kullback–Leibler

(KL) divergence [Lindley and Kullback, 1959], which is a measure of similarity

between any two distributions. The closer our approximating distribution is the

better. This method is typically referred to as variational inference (VI). We

refer the reader to [Ghahramani, 2015,Gal, 2016,Challis and Barber, 2013] for

additional information.

2.4.1 Inference as Optimisation

In this subsection, we will give a formal introduction to the variational lower

bound (aka variational objective). The variational lower bound is the objective

our model learns to maximise, and this incorporates optimising the likelihood of

the data. The variational objective is obtained by first starting with the formula

for marginal likelihood.

P (x) =
∫
P (x, z)dz =∫ qφ(z)

qφ(z)
P (x, z)dz

= Eqφ [P (x,z)
qφ(z)

]

(2.8)

Using Jensen’s inequality due to the logarithm’s concavity, log(Eqφ [(P (x))]) ≥
Eqφ [log(P (x))] [Jensen, 1906].

We now have:
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log(P (x)) ≥ Eqφ [log(P (x,z)
qφ(z)

)]

= Eqφ [log(P (x|z)) + log(P (z))− log(qφ(z))]

= Eqφ [log(P (x|z))]−KL(qφ(z)||P (z))

(2.9)

Where q is our variational approximation (e.g., a one layer neural network) to the

true data generating probability distribution p and KL is the Kullback-–Leibler

divergence [Kullback and Leibler, 1951]. It is this objective function, otherwise

known as the variational lower bound L, which we attempt to optimise. This

procedure is holistically known as variational inference, a popular technique in

Bayesian learning [Jordan et al., 1998].

We then have the Evidence Lower Bound (ELBO) L for all training examples,

which we want to maximise.

L ≈= Eqφ [log(P (xn|z))]−DKL(q(z)||P (z)) (2.10)

2.4.2 Computing the Kullback–Leibler Divergence

We will now derive the explicit calculations required for the DKL(q(z)||P (z))

divergence term in Eq 2.10, as this is required to implement the proposed models

in this thesis. We start with the definition of the KL divergence,

DKL(qφ(z)||P (z|x)) =

∫
qφ(z) log

qφ(z)

P (z|x)
dz (2.11)

When both the prior pθ(z) = G(0, I) and posterior approximation qφ(z|x) =

G(µ, σ2I) are assumed Gaussian we can produce a closed form solution to the

KL term.

∫
qφ(z) log pθ(z)dz

=

∫
G(z|µ, σ2) log G(z|0, I)dz

= −J
2

log 2π − 1

2
(µ2 + σ2)

(2.12)

And:
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∫
z

qφ(z) log qφ(z)dz

=

∫
G(z|µ, σ2) log G(z|µ, σ2)dz

= −J
2

log 2π − 1

2
(1 + log σ2)

(2.13)

So,

−DKL(qφ(z)||P (z|x)) =
∫
qφ(z) log(pθ(z))dz −

∫
qφ(z) log qφ(z)dz

= 1
2

∑D
d=1(1 + log(σ2

d)− (µ2
d)− (σ2

d))
(2.14)

Where D is the dimension of the vectors σ2 and µ.

2.4.3 Approximate Inference

Once we have approximated the posterior distribution with qφ(w) ≈ P (w|X, Y ),

we can then use this to perform approximate inference of the true posterior,

P (Y∗|X∗, X, Y ) =
∫
P (Y∗|w,X∗, X, Y )P (w|X, Y ) dw

≈
∫
P (Y∗|w,X∗, X, Y )qφ(w) dw

= Eqφ [(P (Y ∗|w,X∗, X, Y ))]

(2.15)

In general, this can still be quite computationally expensive to compute.

2.4.4 Mean Field Variational Inference

We will now introduce a simplification in variational inference, applied later

during model derivations. There is a balance when we determine the function

qφ we would like to use to approximation the posterior. We need one which is

expressive, to approximate the posterior to a high standard, and simple enough

so that we still have a tractable approximation [Bishop, 2006b]. A favourite

function qφ is one that is a fully factorised approximation to the posterior,

otherwise referred to as a mean field approximation to the posterior. This choice

of function makes the strong assumption that all latent variables are independent,

which significantly simplifies derivations and speeds up the training process,

which comes at a cost. It is trivial to see that this independence assumption
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when made on a model with dependent latent variables, would perform worse.

With the independence assumption, the model will be unable to capture the

interactions between the latent variables. This idea of assuming a fully factorised

approximation originates from the mean field theory of physics [Opper and Saad,

2001]. An example of a fully factorised approximation to a posterior over N

latent variables is shown in Eq (2.16), where each factor over a latent variable

zi has its variational parameters θi.

qφ(z) =
∏N

i=1 q
θi(zi) (2.16)

The benefits of using mean field variational inference (MFVI) is that it permits

optimisation of the ELBO through an iterative updating procedure. We will

now focus on methods for calculating the ELBO efficiently.

2.4.5 Stochastic Variational Inference

We will now briefly overview a technique used to scale variational inference

to large datasets, as new datasets for modelling knowledge graphs can be

extremely large (discussed later in detail Section 3.4). Large datasets raise

computational difficulties with Bayesian methods, thus, research into scalable

inference algorithms essential. We have shown VI can be used to re-frame

Bayesian inference as an optimisation problem. For most models we deal with,

when we use MFVI, our variational objective breaks down into a sum over

variational objectives across all M individual training examples. Problems

of independent objectives are known to be solved efficiently using stochastic

optimisation techniques [Badrinarayanan, Kendall, and Cipolla, 2017, Robbins

and Monro, 1985]. Stochastic VI equates to using a stochastic optimisation

algorithm to maximise the ELBO (the variational objective function) [Hoffman,

Bach, and Blei, 2010,Hoffman et al., 2013,Ghahramani and Attias, 2000,Wang,

Paisley, and Blei, 2011]. The motivator for applying stochastic optimisation

algorithms is that they allow VI to scale to extensive datasets. Using stochastic

optimisation methods for variational objectives was proposed in [Hoffman et al.,

2013,Ghahramani and Attias, 2000,Sato, 2001. Returning to the ELBO, when

using MFVI, we have a decomposable loss over our M data points.

L̂ =
∑M

i=1 Eθiq [log(P (xi|zi)) + log(P (zi))− log(qθi(zi))] (2.17)
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For Eq (2.17), each iteration of our stochastic optimisation algorithm scales

with M , which is extremely expensive for large M . Stochastic VI solves this

scalability issue using the same techniques employed in stochastic gradient

descent - mini-batches. For each iteration, we randomly sample mini-batches of

size S which can then be used to estimate the ELBO, as shown in Eq (2.18).

L̂ ≈ M
S

∑S
i=1 Eθiq [log(P (xi|zi)) + log(P (zi))− log(qθi(zi))] (2.18)

2.4.6 Amortised Variational Inference

We will now introduce a family of variational models, named amortised variational

models, as they help with scalability by simplifying the learning process. The

simple idea of amortised VI is to use a function f(xi) to predict the optimal

latent variables zi. By doing this, we replace the local variational parameters

θi by a function of the observations x, typically with the parameters shared

across all observations. Therefore we could say inference is amortised. An

example where amortised VI has been successfully applied is to Deep Gaussian

Processes (DGPs) [Damianou and Lawrence, 2013]. To allow DGPs to scale

to large datasets, the authors of [Dai et al., 2015] estimate the latent variables

as functions of deep neural networks, known as the inference network in VI.

The use of the inference network to estimate the parameters of the distribution

over the latent variables, which also significantly improved convergence rate

in [Dai et al., 2015]. Amortised VI became a commonly used tool in DGPs,

which naturally led to the concept of the Variational Auto-Encoder [Kingma

and Welling, 2013,Rezende, Mohamed, and Wierstra, 2014].

2.5 Variational Auto-encoder

We will now explore one of the commonly used frameworks for VI — amortised

VI, later applied by the models proposed in this thesis. The graphical model

for the VAE is shown in Fig 2.1. The VAE is a probabilistic extension of the

Auto-encoder model [Vincent et al., 2008]. Variational Deep Learning can be

classified into a subcategory called Amortised VI which uses a deterministic

mapping function onto the latent variables distribution parameters. Thus using

a neural network (deterministic) as an encoder can be classified as Amortised
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VI. We will discuss some of the key components that contribute to the success

of the VAE; the inference network and the re-parametrisation trick.

zφ θ

x

N

Figure 2.1: The original variational auto-encoder directed
the graphical model. Solid lines denote the generative model
pθ(z)pθ(x|z), dashed lines denote the variational approximation
qφ(z|x) to the intractable posterior pθ(z|x). The variational
parameters θ are learned jointly with the generative model pa-

rameters φ.

Returning to our variational objective: Evidence Lower Bound Eqφ [log(P (x|z))]−
DKL(qφ(z)||P (z)). Using the VAE framework, we can define P (x|z) to be the

reconstruction loss (decoder), and define q(z|x) to be the encoder from our

data to the distribution parameters. The first VAE [Kingma and Welling, 2013]

assumes the data was generated conditioned on a set of latent variables, i.e. the

data is generated by a Gaussian distribution, with unknown parameters. So how

exactly do we then estimate these unknown parameters?

2.5.1 Estimating Distribution Parameters

The first key concept in variational deep learning is that we parametrise a

probability distribution with a neural network. We will denote a neural network,

parametrised by w as fw(·). Hence we can approximate the parameters for a

normal distribution G(µ, σ2), through µ ≈ fw1(·) and σ2 ≈ exp (fw2(·)).

2.5.2 Re-parametrisation trick

The second key concept in variational deep learning is the application of the

Stochastic Variational Bayes Estimator (SVBE). SVBE allows us to train the

parameters for a probability distribution through stochastic gradient descent,

using a re-parametrisation trick. If our variational distribution qφ = G(µ, σ2)

is assumed to be Gaussian, then θ = µ + ε̂ · σ, otherwise known as the re-

parametrisation trick, where ε̂ ∼ G(0, 1). With this re-parametrisation trick, we

can then compute the gradients required for our distribution using Eq (2.19)

and Eq (2.20).
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∂L̂
∂µ
≈ ∂L̂
∂θ

(2.19)

∂L̂
∂σ
≈ ε̂ · ∂L̂

∂θ
(2.20)

This is known to permit unbiased and low-variance approximations of the

model parameters’ gradients. The current framework is most suited for training

continuous latent variables. However, if the latent variables are discrete, other

options exist such as using a modified REINFORCE algorithm [Vilnis and

McCallum, 2014].

VAE Improvements

The typical VAE makes firm assumptions regarding inference on the posterior

distribution. The assumptions made are that the posterior is approximately

factorial, as well as the assumption that we can approximate these parameters

through logistic regression (in the classification case). Thus several improvements

have been made to VAE’s, notably the Importance Weighted VAE (IWAE)

[Burda, Grosse, and Salakhutdinov, 2015] was proposed to avoid these strong

assumptions. In the IWAE’s recognition network (encoder), the model uses

multiple samples to approximate the conditional distribution parameters for the

generation network. This method was proven to reproduce MNIST [LeCun and

Cortes, 2010] images to a much higher accuracy than the original VAE when

using Maximum Mean Discrepancy (MMD) as the loss measure.

2.6 Latent Regularisation

We will now introduce a regularisation method that can be applied to latent

models [Xie, Deng, and Xing, 2015], we believe could benefit the work of this

thesis. Latent regularisation is used to try and force a latent variable, say A,

to be as independent as possible, this often leads to better generalisation, as

with normal regularisation methods on neural network weights, as described in

Section 2.2. One recent technique to regularise latent variables is the Mutual

Angular Regularisation [Xie, Deng, and Xing, 2015] (Ξ), as shown in Eq (2.21).

This technique has shown to improve performance in neural variational models

on a range of natural language tasks [Miao, Grefenstette, and Blunsom, 2017].
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First, we define the cosine distance between two relation vectors a(ti, tj) =

arccos(
|ti·tj |
||ti||·||tj ||). The mean angle of all pairs of N relations is ξ = 1

N2

∑
i

∑
j a(ti, tj)

with the variance defined as V = 1
N2

∑
i

∑
j(a(ti, tj)−m)2. We can then optimise

a hyper-parameter λ which controls how varying the angles need to be for each

latent variable vector.

Ξ(A) = λ(ξ − V ) (2.21)

2.7 Active Learning

One of the potential benefits that can be gained from representing a knowledge

graph in a probabilistic setting is the ability to use active learning [Tong,

2001,Kapoor et al., 2007] framework; this serves the purpose of identifying and

reducing model uncertainty throughout the training procedure. Modelling a

knowledge graph using probability distributions could enable us to implement

Bayesian active learning methods similar to [Gal, Islam, and Ghahramani, 2017].

We first introduce importance sampling, so that it can be used in the description

of active learning.

Importance Sampling

Importance sampling requires that you draw a list of indices from an alternative

distribution q(c). This produces a list of indices with potential overlap as you

sample with replacement according to your sampling distribution q(C). With

our list of indices idx = i1, ·, iN we can form an approximation to Z,

Z ≈ 1

N

∑
n∈idx

zs
q(s) (2.22)

We have obtained an unbiased estimator of Z.

Active Learning

We first define an activation function for active learning, which is the enabler in

active learning. Let M denote the model in which we desire to enhance with

active learning and D our Dataset, with inputs defined as x ∈ D. We define the
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acquisition function a(M,D) as a function aids the active learning system with

deciding the input x∗ to acquire, to reduce model uncertainty maximally after

x∗ has been processed through the learning system of model M . This can be

formulated as 2.7;

x∗ = argmaxx∈D a(M,x) (2.23)

The acquisition function that seemed most successful in high dimensional active

learning from [Gal, Islam, and Ghahramani, 2017], was the Variation Ratios

[Freeman, 1965] function 2.7.

Variation Ratio(x) = 1−maxyP (y|x,Dtrain) (2.24)

During situations where the uncertainty estimates around points are unavail-

able, on can tend to other methods for importance sampling, which usually

involve calculating the gradient norm of each sample [Zhao and Zhang, 2015], a

computationally expensive process. The gradient norm is computed to try to

minimise the variance of the gradient norms, for a more robust learning proce-

dure. Recently it has been proposed to approximate the sample probabilities via

an LSTM, using a detailed history of loss’s [Katharopoulos and Fleuret, 2017].

2.8 Example: Variational Matrix Factorisation

We will now discuss how MFVI (Section 2.4.4) is applied to matrix factorisation

[Lim, 2007], to derive the variational lower bound, as this shares similarity with

derivations in Chapter 6. Overall we would like X ≈ ER. In [Lim, 2007] this is

used in a collaborative filtering setting, where we wish to factorise a matrix of

user & movie ratings. This factorisation is then applied to better recommend

new movies to users, based on similarity patterns. E ∈ RIxN represents the

users latent space, R ∈ RJxN is a matrix defining the interactions of the latent

components. We denote N as the latent dimension, I the number of users and

J the number of movies. Using the squared loss, Eq (2.25), we can phrase the

problem as one minimising the cost function.
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f(Ei, Rj) =
N∑
d=1

(EidRjd −Xi,j)
2 (2.25)

We then have our density,

Xi,j ∼ G(< Ei, Rj >, τ
2) (2.26)

Where τ 2 is the variance around the observation noise of mean < Ei, Rj >.

Here the probability of an obervation Θ(Xi,j) is given by a probability density

function (PDF).

Θ(Xi,j) = pθ(Xi,j = 1|E,R) = G(Xi,j;< EiRj >, τ
2)

=
1√

2πτ 2
exp(−1

2

(Xi,j− < EiRj >)2

τ 2
)

(2.27)

We place independent priors on each latent dimension in E and R, e.g eil ∼
G(0, σ2

l ) and pjl ∼ G(0, ρ2
l ). This gives us the PDF for E and R below.

pθ(E) =
I∏
i=1

N∏
l=1

1√
2πσ2

l

exp(−1

2

µ2
il

σ2
l

)

pθ(R) =
J∏
j=1

N∏
l=1

1√
2πρ2

l

exp(−1

2

v2
jl

ρ2
l

)

(2.28)

Where the prior variances ρ2
l and σ2

l are column dependent. To approximate the

posterior, we can use Bayes rule. However, this is computationally expensive.

pθ(E,R|X) =
pθ(X|E,R)pθ(E)pθ(R)

pθ(X)
(2.29)

We can then derive the Evidence Lower Bound (ELBO) Eq (2.30).

Eqφ [log pθ(X|E,R) + log pθ(E) + log pθ(R)− log qφ(E)− log qφ(R)]

= F(qφ(E)qφ(R))

(2.30)
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In order to maximise F(qφ(E)qφ(R)), we need to optimise one, keeping the other

fixed. We continue to do this until we have converged to a solution. To maximise

qφ(E) with respect to qφ(R) being fixed, we must differentiate ∂F(qφ(E)qφ(R))
∂qφ(E)

and

solve for qφ(E). Similarly for qφ(R).

Pros: This method, unlike the MAP point estimates, accounts for empirical

uncertainty observed in the data. Cons: Computationally expensive for large

matrices, as we need to calculate the inverse of a large matrix which has time

complexity O(N3) in the number of dimensions N . Computing the inverse of a

matrix also requires we store the full users/ rating matrix in memory, thus we

have space complexity O(N2) for a square N ×N matrix.

2.9 Chapter Conclusion

Section 2.4, Section 2.4.4 and Section 2.4.6 have described one of the core

methods used in this thesis such as neural VI, mean field VI and amortised

VI. Section 2.5 highlighted recent advances within the area of neural VI and

Section 2.4.5 describes stochastic VI techniques used to combat the scalability

problems encountered when applying VI to large datasets. Section 2.6 and

Section 2.7 highlight general methods which could be used to improve the

performance of a probabilistic system. Section 2.8 details an application of VI

to matrix factorisation, a problem we will later observe shares many similarities

with knowledge graph completion.
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Chapter 3

Knowledge Graphs

3.1 Outline

Section 3.2 provides a formal introduction to knowledge graphs. Section 3.3

defines the different assumptions used to create negative examples in knowledge

graphs. Lastly, Section 3.4 presents data exploration of knowledge graph datasets

experimented with in this thesis.

3.2 Knowledge Representation

Figure 3.1: Google Knowledge Graph

This section will give a brief history as to what knowledge graphs have been

used for, leading to their formal definition. For an extended period in logic and

artificial intelligence, knowledge graphs have been a core model for information

and the relationships between various types of information [Davis, Shrobe, and

Szolovits, 1993], such as modelling semantics [Sowa, 1984]. In a study on the

definition of a knowledge graph [Ehrlinger and Wöß, 2016], the description

was identified ”A knowledge graph acquires and integrates information into an
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ontology and applies a reasoner to derive new knowledge.” Knowledge graphs are

used by Google to represent the internet, known as ”Google Knowledge Graph”1;

shown in Fig 3.1, Facebook has a knowledge graph based on social networks

named the ”Entity Graph”2 and BeneloventAI have a healthcare knowledge

graph to represent protein interactions3, for a more sophisticated drug discovery

search method. One of the main benefits of representing your information as a

knowledge graph is the ability to perform link prediction, i.e., an attempt to

conclude the entities are connected or unconnected.

Taking the example from [Nickel et al., 2015], when representing the information;

”Leonard Nimoy was an actor who played the character Spock in the science-

fiction movie Star Trek.”

We have multiple relationships that can be extracted, as shown in Table 3.1.

subject predicate object
(LeonardNimoy, profession, Actor)
(LeonardNimoy, starredIn, StarTrek)
(LeonardNimoy, played, Spock)
(Spock, characterIn, StarTrek)
(StarTrek, genre, ScienceFiction)

Table 3.1: Example: Knowledge Graph Extraction (Knowledge
Base)

We can use all the subject, object, and predicate triples to represent a knowledge

graph of the known information relationships from this small extract of text.

We represent each of the entities as a node and a directed edge indicating a

fact, with the edge pointing towards the object from the subject. For different

relationships we have different types of edges in our graph, e.g., one way of

representing different relationships visually would be a distinct coloured edge

between entities. This construction is what is referred to as a (KG), as well as a

heterogeneous information network [Sun and Han, 2012]. Depending on the KG,

we may also have a hierarchy of relationships within it, i.e. Donald Trump is a

professional politician, a professional politician is a type of full-time job, and a

full-time job is a type of contract. The KG can also provide constraints, such

as a professional politician can only have a full-time contract with the USA, so

long as the politician does not have a full-time deal with Russia.

1https://developers.google.com/knowledge-graph/
2https://www.adweek.com/digital/facebook-builds-knowledge-graph-with-info-modules-

on-community-pages/
3https://benevolent.ai/news/announcements/medical-ai-award-sets-its-sights-on-treating-

parkinsons/

https://developers.google.com/knowledge-graph/
https://www.adweek.com/digital/facebook-builds-knowledge-graph-with-info-modules-on-community-pages/
https://www.adweek.com/digital/facebook-builds-knowledge-graph-with-info-modules-on-community-pages/
https://benevolent.ai/news/announcements/medical-ai-award-sets-its-sights-on-treating-parkinsons/
https://benevolent.ai/news/announcements/medical-ai-award-sets-its-sights-on-treating-parkinsons/
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We will formally describe the core modules of knowledge graphs, using similar

definitions to those found in [Minervini et al., 2017]. Facts are represented in

the form of a binary value for truth concerning a given statement. We describe

a knowledge graph as a tuple (E,R, T ) of;

• A set of entities E, which form the nodes.

• A set of predicates/ relations P/R, which form the edge labels and represent

the node relationships.

• A set of facts/ triples T , representing all the entity pairs known to have

predicates. We show these as a tuple (subject, relation, object)/ (subject,

predicate, object), otherwise stated (s,r,o) and referred to as a fact.

The existence of a tuple implies the existence of a fact in the knowledge base.

3.3 Open vs Closed World Assumption

This section will discuss a few of the available assumptions available to create

negative examples. Observed triples will always encode existing facts, and there

are many ways to interpret unknown/ non-existing facts.

• Closed World Assumption (CWA): Everything that is not known, is false.

This powerful claim leads to the largest number of negatives generated

under a given KG, as each non-existing triple is assigned the false binary

value. For example, if we had no ’hasmarried’ relationships for Donald

Trump, under CWA, we would assume he is not ’hasmarried’ to anyone,

which we know in reality is a false assumption.

• Open World Assumption (OWA): Everything that is not known, remains

unknown. Each non-existing triple is left unassigned. OWA’s more cautious

approach is justified in the previous example, as we do not know anything

about Donald Trumps ’hasmarried’ relationships, we will neither assume

he is/ is not married. This assumption ties in well with the sparsity of

knowledge graphs, as we can be working with some whereby less than 1%

of the facts are known/ have been discovered.

• Local Closed World Assumption (LCWA): Everything that is not known

remains unknown unless we have a positive permutation of that unknown,

then it is assigned the false label. I.e. If we know Donald Trump is

married, then we assign not ’hasmarried’ between Donald Trump and
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# Training Examples Per Epoch Dataset Statistics
Dataset positive triples negative triples # Entitys # Relations
Nations 10,686 0 55 14
Kinship 1,992 0 104 25
UMLS 6,529 0 135 46

FB15K-237 310,116 0 14,541 237
WN18RR 93,003 0 40,943 11

WN18 151,442 0 40,943 18

Table 3.2: Dataset Statistics

all other entities who are not Melania Trump. However, we can see the

pitfalls of this assumption as this assumes the relationship ’hasmarried’ is

one-to-one, however, for certain entities, there is, in fact, a one-to-many

relationship. In practice, this assumption works well and can generate a

reasonable number of negatives.

3.4 Datasets

This section will describe in detail the datasets used, as well as complete a

basic data exploration over one dataset. We evaluate our models across six

public datasets to assess performance. The datasets were chosen so as to cover

a range of domains of small knowledge graphs; Kindship4, UMLS5, Nations,

and three large datasets; WN18[Bordes et al., 2013a], FB15K-237[Toutanova

and Chen, 2015b], WN18RR [Dettmers et al., 2017]. Where FB15K-237 is an

modified version of FB15K without the symmetric relations i.e if (e1,r,e2) is true,

then (e2,r,e1) is also true. Removing symmetric relations makes the dataset

significantly harder, as shown by [Dettmers et al., 2017]. Similarly, WN18RR is

based on WN18 with the symmetric relationships removed. Some fundamental

analysis of the size of each knowledge graph is shown in Table 3.2. Notice how

we are not provided with negative examples; thus we will later create negatives

using an assumption discussed in Section 6.5.

Table 3.2 displays the number of positive triples, entities and predicates in the

original dataset. It will be useful to explore the models proposed in Section 6

on a variety of dataset sizes to reveal scalability issues.

4http://archive.ics.uci.edu/ml/datasets/Kinship
5https://www.nlm.nih.gov/research/umls/

http://archive.ics.uci.edu/ml/datasets/Kinship
https://www.nlm.nih.gov/research/umls/
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jordan indonesia netherlands china brazil usa uk ussr burma poland india israel cuba egypt

260 146 249 232 284 302 215 243 146 313 287 462 514 331

Table 3.3: Nations: Entity Frequency

Fig 3.3 shows each of the entities in the Nations dataset has a similar frequency,

apart from Cuba and Israel, which have the highest frequency counts in the

dataset, in contrast to Indonesia and Burma, with the lowest frequency counts.

Similarly, in Table 3.4 most predicates are within a range of 10–60 observations.

However, NGOs (non-governmental organisations) have the highest frequency

count of 95, in contrast with Commonbloc1, which has a frequency count of two.

3.5 Chapter Conclusion

Section 3.2 and Section 3.3 have introduced the fundamental components of

a knowledge graph as well as how to create negative examples when they are

not provided, as is typically seen in many real-world knowledge graph datasets.

Section 3.4 provided analysis of two knowledge graphs; such as the frequency of

entities and relations, as well as the various types of nodes and edges within a

knowledge graph.
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Frequency Predicate

23 relemigrants
2 exportbooks
1 economicaid
56 accusation
28 reltreaties
8 relbooktranslations
31 treaties
97 lostterritory
54 relintergovorgs
66 officialvisits
7 relngo
9 independence
12 militaryactions
10 relstudents
141 relexports
8 reldiplomacy
5 unoffialacts
14 severdiplomatic
34 timesincewar
78 weightedunvote
84 intergovorgs3
93 attackembassy
3 intergovorgs
9 conferences
21 booktranslations
34 militaryalliance
24 exports3
68 aidenemy
92 embassy

Frequency Predicate

16 unweightedunvote
31 tourism
19 commonbloc0
27 tourism3
87 expeldiplomats
12 warning
5 eemigrants
13 commonbloc2
42 pprotests
94 nonviolentbehavior
91 blockpositionindex
12 dependent
23 negativecomm
52 timesinceally
2 commonbloc1
14 releconomicaid
95 ngo
21 emigrants3
23 reltourism
18 students
55 duration
5 boycottembargo
46 negativebehavior
9 relexportbooks
4 violentactions
64 ngoorgs3

Table 3.4: Nations: Predicate Frequency
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Chapter 4

Learning In Knowledge Graphs

4.1 Outline

These newer models applied to Knowledge Graphs fall into two model categories;

Latent Feature Models (Section 4.2), and Graph Feature Models (Section 4.3).

This chapter is centred around learning models under these frameworks. Sec-

tion 4.4 we will discuss methods which are a hybrid of both Latent Feature

Models and Graph Feature Models. Lastly, we will consider two cases of learn-

ing a knowledge graph model using VI; the Variational Path Ranking method

(Section 4.4.2), as well as the Variational Graph Auto-encoder (Section 4.4.3).

Learning to model a knowledge graph is typically referred to as link prediction,

as you want to learn the links (relationships) between entities.

4.2 Latent Feature Models

In this section, we assume the binary label of an edge (relation) can be predicted

solely based on latent representations of the fact, which in essence leads to a

sparse adjacency matrix factorisation problem. These latent feature models

models are typically popular due to their empirical success [Nickel, Tresp, and

Kriegel, 2011, Bordes et al., 2013b, Socher et al., 2013, Yang et al., 2014, Nickel,

Rosasco, and Poggio, 2015, Trouillon et al., 2016, Dettmers et al., 2017]. We will

also introduce latent feature models which learn the parameters of distributions

over latent features [He et al., 2015,Xiao, Huang, and Zhu, 2016]. We will

utilise a few of these models. Recent work shows that representing the subject,

relation, and object independently as vectors yields state-of-the-art results for

link prediction. These methods are referred to as Latent Feature Models, and

the ’vectors’ are typically referred to as embeddings.
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The task of link prediction can be rephrased into a problem where the aim is to

learn a function score(s, r, o), where this is of significant value when we observe

a fact, conversely this function ideally takes a small amount when we find a false

fact.

We can use a neural link prediction system, where each entity and relation has

an associated (unique) learned embedding. The specific task of link prediction

is then to complete either the triple (s, r, ?) or (?, r, o). We learn these unique

embeddings via a scoring function Θ, applied to leverage the similarity between

these embeddings. Previous methods took a rule-based approach to the matter

(manually engineered features/rules), whereas newer methods take what can be

interpreted as a neural approach (learnt features /rules).

Given an observation matrix Xj ∈ R||E||×||E||, for the j’th predicate, where each

element xj ∈ Xj is a Bernoulli distributed random variable , with probability

pj, i.e. we have xj is a binary random variable indicating whether a connection

exists.

Ideally, we want to decompose Xj to discover latent factors, i,e. Xj ≈ ERjE

such that; E ∈ Rκ×||E|| represents the entity latent space, R ∈ Rκ×||P || is an

asymmetric matrix defining the interactions of the latent components, ||P ||
denotes the number of predicates, κ represents the latent dimension and ||E||
the number of entities and Rj refers to the j’th column of R.

Using the above factorisation and given a triple (i, j, k) ∈ Dataset, otherwise

known as a fact, we can approximate the binary value of subject i being connected

through predicate j to object k by xi,j,k ≈ Θ(score(EiRjE
T
k )).

Where Θ is the logistic inverse link function, given by

Θ(x) =
1

1 + e−x
(4.1)

4.2.1 Scoring Functions

ConvE function [Dettmers et al., 2017].

ConvE(es, er, eo) = f(vec(f([ês, êr] ∗ w))W )eo (4.2)

Where er ∈ RK , ês, êr are the 2D reshaping of es, er, ∗ denotes the convolution

operator and f denotes a MLP layer. This has space complexity O(K).
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Pros: Convolution operation can summarise multiple interactions, including

those between nearby dimensions well. Cons: Less interpretable embeddings

when performing cluster analysis.

DistMult function [Yang et al., 2014].

DistMult(es, er, eo) =< es, er, eo > (4.3)

Where er ∈ RK , with time complexity O(K) and space complexity O(K).

Pros: Generally well performing across tasks, and fast to compute. Cons:

Struggles with modelling asymmetric relationships.

ComplEx function [Trouillon et al., 2016].

ComplEx(es, er, eo) = Re(< es, er, eo >)

=< Re(es), Re(er), Re(eo) >+ < Im(es), Re(er), Im(eo) >

+ < Re(es), Im(er), Im(eo) >− < Im(es), Im(er), Re(eo) >

(4.4)

Where er ∈ CK is a complex vector, with time complexity O(K) and space

complexity O(K). This function was motivated by the lack of DisMults ability

to model anti-symmetric predicate relationships.

Pros: Great performance, especially when recovering non-symmetric adjacency

matrices. Cons: Requires twice the number of embeddings as the DistMult.

RESCAL function [Nickel, Tresp, and Kriegel, 2011].

RESCAL(es, er, eo) = eTs ereo (4.5)

er ∈ RK2
. With time complexity O(K2) and space complexity O(K2).

Pros: Symmetric similarity measure between relation and object. Can capture

multiplicative interactions between two entity vectors. Cons: Slow inference.

HolE function [Nickel, Rosasco, and Poggio, 2015].
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HolE(es, er, eo) = eTr (F−1[F [es]�F [eo]]) (4.6)

Where � is the element-wise product between two vectors, F and F−1 denote

the Fourier and Inverse Fourier transform. er ∈ RK , time complexity O(K logK)

and space complexity O(K).

Pros: Using correlation as the main operator it can capture complex relation-

ships. Cons: Time complexity can be a problem for extremely large KG’s.

NTN function [Socher et al., 2013].

NTN(es, er, eo) = uTr f(esW
[1...D]
r eo + Vr

[
es

e0

]
+ br) (4.7)

Wr ∈ RK2D, bR ∈ RK , VR ∈ R2KD, ur ∈ RK . Where D is an additional

latent dimension of the NTN model. With time complexity O(K2D) and space

complexity O(K2D).

Pros: A generalisation of the RESCAL approach. Cons: Many parameters

leading to slow inference.

TransE function [Bordes et al., 2013b].

TransE(es, er, eo) = ||(es + er)− eo||r (4.8)

er ∈ RK . With time complexity O(K) and space complexity O(K).

Pros: Fast to compute, simplifies the embedding space decomposition. Cons:

Asymmetric similarity measure between object and relation.

The above scoring functions are not designed to measure the similarity between

distributions. However, there has been work creating score functions that take

into consideration the full distribution, such as the energy function proposed

in [Vilnis and McCallum, 2014], more generally known as potential functions

[Aizerman, Braverman, and Rozonoer, 1964]. Potential functions measure the

energy difference between two multivariate Gaussian distributions. A potential

function used between two Gaussian distributions is given in Eq (4.9).
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Potential between two Gaussian distributions(used for word embedding)

[Vilnis and McCallum, 2014]

KL(N|||N〉) =

∫
x∈Rn
G(x;µi

∑
i

w) log
G(x;µj

∑
j)

G(x;µi
∑

i)
dx (4.9)

The authors of He et al., 2015 introduce two knowledge graph specific potential

functions measuring the similarity between graph embeddings for link prediction.

KG2E KL function [He et al., 2015].

KG2E KL(Σs,Σr,Σo, µs, µr, µo)

= 1
2
tr{(Σ−1

r (Σs + Σo)) + µTΣ−1
r µ− log det(Σs+Σo)

det(Σr)
}

(4.10)

µ = µs − µo − µr. With time complexity O(K) and space complexity O(K).

Pros: Produces a cheap computation for comparison between three distributions.

Cons: Uses the KL divergence as a measure of similarity between the entity

and the relation distribution, which is asymmetric.

KG2E EL function [He et al., 2015].

KG2E EL(Σs,Σr,Σo, µs, µr, µo) =
1

2
{µTΣ−1µ+ log detΣ} (4.11)

Σ = Σs + Σr + Σo, µ = µs − µo − µr. With time complexity O(K) and space

complexity O(K).

Pros: Symmetric divergence metric. Cons: Performance strictly worse than

KG2E KL.

4.3 Graph Feature Models

This section introduces the alternative method used in modelling knowledge

graphs: graph feature models. Graph feature models assume that the binary

label of an edge can be predicted through a function of existing edge relationships

in the graph. This assumption leads to a new class of link prediction models

and is justified by the following example: the parents of a person are often

married, so we could produce a strong estimate of (Donald,marriedTo, Ivana)
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from the observation of the path Donald
ParentOf−−−−−−→ IvankaTrump

ParentOf←−−−−−−
IvanaTrump, as this represents a common child between the parents. In

contrast to matrix factorisation models, this rule-based decision is completely

interpretable, making graph feature models an attractive architecture choice for

certain problem domains. The problem of graph feature models is rephrased as

relational inference (e1, ?, e2), whereas link prediction in the adjacency matrix

factorisation model is working on entity inference (e1, r, ?).

Uni-relational

For uni-relational data, we can look at local similarity indices, such as common

neighbours. The notion of common neighbours is a computationally low intensive

index, thus scale desirably for large-scale KGs. Uni-relational graphs tend to

utilise global similarity features such as Katz index [Katz, 1953], which derive the

similarity of entities from the combination of all paths between nodes, or local

features which measure similarity based on random probabilistic walks. Global

similarities usually provide improved results over local similarities. However,

this comes with an increased computational cost.

Multi-relational

For multi-relational graph feature models, we can choose to use rule mining

and inductive logic programming (ILP) methods. These methods using mining

techniques to discover new rules, which are then applied to the knowledge graph

to extract a further new selection of rules. For example, ALEPH is an ILP

algorithm that attempts to learn logical rules from relational data by inverting

the known entailment statements [Muggleton, 1995]. ALEPH is also able to

cope with the OWA on knowledge graphs, and it also scales desirably compared

to other rule-based systems. The distinct advantage of these multi-relational

rule-based systems is the interpretability, however, usually rules over entities

only explain a small proportion of the natural patterns within the system.

4.3.1 Path Ranking Algorithm

Path ranking algorithms employ the idea of using constrained maximal length

random walks for predicting relational links in knowledge graphs [Lao and

Cohen, 2010, Lao, Mitchell, and Cohen, 2011]. If we define a path of length L
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as πL(i, k, j, t), which denotes the sequence e1
r1−→ e2

r2−→ e3 · · ·
rL−→ ej, where t is

a sequence of relations /edges traversed t = (r1, r2, · · · , rL). We set a constraint

such that there needs to exist an edge of relation k joining entity i, j ei
rk←− ek.

For small datasets, we can construct the set of all possible paths over all path

types
∏

L(i, j, k). When the datasets are extremely large, we can combat this

through sampling methods. From enumerating the paths, we can compute a

probability density function (PDF) over paths. We are able to compute this

PDF under the assumption that we follow an outgoing link uniformly at random,

per each step of traversing the knowledge graph. Let P (πL(i, j, k, t)) be the

probability of a path, we can then use these these probabilities as features, for

example in a logistic regression model, for inferring new relationships between

entities.

φPRAi,j,k = [P (π) : π ∈
∏

L(i, j, k)]

fPRAi,j,k = wTk φ
PRA
i,j,k

(4.12)

Based on the path we choose to follow with the highest likelihood, we can then

easily interpret this. An example of a relational path that could be learned is

isFriends, livedWith. The relation path implies that it is likely that person A

has spoken with person B if person A is friends with person C, and person C

has lived with person B. This statement can be expressed in logical form as a

Horn clause:

(pA, hasSpokenTo, pB)←− (pA, isFriends, pC) ∧ (pC, livedWith, pB)

(4.13)

We can then use L1 regularisation to promote sparsity on values of w; this is

now equivalent to rule learning.

4.4 Graph Feature and Latent Methods

Recent work has used hybrid ideas from both Graph Feature and Latent Feature

models. We will introduce two of these models, the Neural Theorem Prover

[Rocktäschel and Riedel, 2017] and the Graph Convolution Network.
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Neural Theorem Prover

The Neural Theorem Prover (NTP) [Rocktäschel and Riedel, 2017] is both a

graph feature and latent model as it learns features regarding graph relations,

using latent embeddings. The NTP, inspired by Prolog’s backward chaining

algorithm, recursively transforms a query into subqueries via learnt rules (graph

features). As NTP does this for all rules in the knowledge base, it effectively

undergoes a depth-first search. There have been recent improvements to speed

up this depth-first search, which only consider the most promising proofs based

on an approximate nearest embedding neighbour search [Minervini et al., 2018].

Pros: Interpretable rules learnt. Cons: The search over deep proofs is very

time-consuming.

4.4.1 Graph Convolution Network

We will now cover in more detail the Graph Convolution Network (GCN), as it

lays the foundations for models discussed in the related work, Chapter 5. As many

important real-world problems are found in the natural form of graphs, there

has been research focus on generalising neural networks for graph-structured

data [Duvenaud et al., 2015,Henaff, Bruna, and LeCun, 2015,Kipf and Welling,

2016,Defferrard, Bresson, and Vandergheynst, 2016]. A more recent and prin-

cipled approach is using spectral graph convolutions [Defferrard, Bresson, and

Vandergheynst, 2016], however these spectral operations are extremely time

consuming. The authors of [Kipf and Welling, 2016] use this spectral framework

while introducing simplifications enabling greatly reduced training time and

improved classification performance. The GCN achieved these performance

gains in part by sharing filter parameters across the whole graph structure, thus

allowing the model to learning structural information across the full graph.

We will now define the typical problem setting. Given a graphG =({V ertices}, {Edges}),
when using a graph convolution network on G, we desire to learn a function

over the adjacency and/or feature matrix f(A,X). Where A ∈ RN×N is the

adjacency matrix and X ∈ RN×D is the feature matrix, N being the number of

nodes and D being the number of features. When there are no available features

for a given graph, we can set X equal to the diagonal matrix and allow the

system to learn representations based purely on the graph structure, represented

in the adjacency matrix. The output of G is a matrix Z, which represents each

node Z ∈ RN×F , where F is the specified number of features per node. Using
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the same notation as Tipf1, we can define the l′th neural network layer as a

non-linear function of the previous l − 1 layer, as shown in Eq (4.14).

H(l) = f(H(l−1), A) , (4.14)

Where H0 = X and H(L) = Z, with L being the total depth of the network.

We then have much freedom in choosing the function f , which is the different

component between models in the Graph Convolution Network family. We will

take a simple function f to highlight the simplifications introduced which have

contributed to the model’s scalability and success. We define the simple function

in Eq (4.15), where Θ is an arbitrary activation function.

f(H l−1, A) = Θ(AH l−1W l−1) (4.15)

Limitations

There were two initial problems identified with the original Graph Convolution

networks; (1) When a feature matrix multiplies the adjacency matrix, it accounts

for all local features to a node, apart from the nodes features. (1) Was solved

by simply adding the diagonal matrix to the adjacency matrix at the start,

Â = A + I, allowing the additional property of self-loops. (2) The matrix

multiplications are un-normalised, which could lead to issues such as exploding

gradients and different feature scales. To solve (2), we can normalise A to

enforces that we can only take a convex combination, at each layer, of each

node’s feature matrix H lW l. We can normalise Â by D̂−1Â, where D̂ is the

diagonal node degree matrix of the modified adjacency matrix Â. In [Kipf

and Welling, 2016] the authors identified that in practise, using a symmetric

normalisation (D̂−
1
2 ÂD̂−

1
2 ) yields improved results. Having dealt with issues (1)

and (2), we have produced the fundamental forward propagation rule used by

the Graph Convolutional Networks in Eq (4.16).

f(H l, A) = Θ(D̂−
1
2 ÂD̂−

1
2H lW l) (4.16)

The corresponding backpropagation rule is trivial to calculate through automatic

differentiation, enabled through frameworks such as Tensorflow [Abadi et al.,

1https://tkipf.github.io/graph-convolutional-networks/

https://tkipf.github.io/graph-convolutional-networks/
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2015]. This method although quite simple has shown to be extremely powerful

in featureless and feature-rich graph data [Kipf and Welling, 2016].

Pros: Easy to implement and excellent performance on graph data. Cons:

Requires using the full observation matrix, which can be expensive in practice

for large knowledge bases.

There has been recent work by researchers at an online blogging site Pinterest, on

scaling these GCN’s to extremely large-scale datasets with billions of connections

[Ying et al., 2018]. Pinterest researchers accomplished this application using

simplifications such as;

1. Working on sub-graph structures identified using random walks.

2. Enhanced parallelism in the computations and dynamic computation

graphs to apply graph convolutions to the dynamically generated sub-

graph structures

This proved beneficial to the PinInterest by resulting in a 30% improvement in

customer engagement rates2.

4.4.2 Variational Path Ranking Algorithm

Recent work by the authors of [Chen et al., 2018] has created a variational

path ranking algorithm (VPR). VPR performed competitively to previous path

ranking methods on small datasets. However, it significantly outperformed all

path ranking competitors when scaled to greater datasets, such as FB15k. This

method split the task into two sub-tasks: (1) path-finding and (2) path reasoning.

The authors also assume there is a latent representation per entity pair, such

as the set of connected paths or shared properties between the entities. These

latent representations subsequently contain the underlying semantics, crucial to

the relational classification of the entity pairs.

Path Finder (Prior)

They frame the pathfinder P (L|es, eo) as a Markov Decision Process to recursively

predict actions. Where actions are an entity relation pair (e,r), this is obtained

through an MLP with a softmax over the total number of outgoing edges. The

2https://medium.com/@PinterestEngineering/pinsage−a−new−graph−convolutional−
[...]

https://medium.com/@Pinterest_Engineering/pinsage-a-new-graph-convolutional-neural-network-for-web-scale-recommender-systems-88795a107f48
https://medium.com/@Pinterest_Engineering/pinsage-a-new-graph-convolutional-neural-network-for-web-scale-recommender-systems-88795a107f48
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authors then use Amortised Variational Inference to approximate the posterior

q(L|(es, eo), r). The posterior has the same architecture as the prior. However,

it is now aware of the relation so can adjust the decisions accordingly.

Path Reasoner (Likelihood)

The path reasoner is based on a Convolutional Neural Network. They first take

a path sequence L = {a1, e1, · · · , ai, ei, · · · , an, en}, with ai is the i-th immediate

relation and ei is the i-th immediate entity. They then project the entities and

relations onto the embedding space, whereby they then concatenate each entity,

relation pair to form a matrix of height n. The matrix is then passed through a

Convolutional and Multi-Layer Perceptron network, where at the output there

is a softmax distribution over all relations R.

Figure 4.1: Variational Knowledge Graph Reasoner Graphical
Model

4.4.3 Variational Graph Auto-encoder

The Variational Graph Auto-encoder [N. Kipf and Welling, 2016] is a follow

up from the Convolution Graph Auto-encoder mentioned in Section 4.3. This

modified version of the GCN is able to utilise a latent representation of a uni-

relation undirected graph.

Given a graph G = ({V ertices}, {Edges}), we define N = |V ertices|, adjacency

matrix A ∈ RN×N and diagonal node degree matrix D ∈ RN×N and a node

feature matrix X ∈ RN×D. The previous setup is a typical GCN. Lastly, we

introduce a matrix of stochastic latent variables Z ∈ RN×F , with F being the

latent feature size; the new component.
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Inference Model

The inference model in [N. Kipf and Welling, 2016] is parametrised by a two-layer

GCN, which we will refer to by the function GCN(·) for simplicity.

q(Z|X,A) =
∏N

i=1 q(zi|X,A), with q(zi|X,A) = G(zi|µi, diag(σ2
i )) (4.17)

where µ = GCNmu(X,A) is the matrix of mean vectors µi, per each exam-

ple i; similarly log σ = GCNσ(X,A) is the matrix of log standard deviations

σi, for each example i. The authors then define a two, two-layer GCN by

GCNµ(X,A) = ÂReLU(ÂXW0)W µ
1 and GCNσ(X,A) = ÂReLU(ÂXW0)W σ

1 ,

with weight matrix W0 being shared between GCNσ and GCNmu. GCNµ.

Where ReLU(·) = max(0, ·) and Â is as previously defined Â = D̂−
1
2 (A+I)D̂−

1
2

is the symmetrically normalised adjacency matrix with self loops accounted for

by A+ I.

Generative Model

The generative model in [N. Kipf and Welling, 2016] is given by the inner

product between latent variables,

p(A,Z) =
∏N

i=1

∏N
j=1 p(Ai,j|zi, zj), with p(Ai,j = 1|zi, zj) = σ(zTi , zj)

(4.18)

Where Ai,j are the elements of A and σ(x) = 1
1+e−x

is the sigmoid function.

Learning

Tipf et al then optimises the variation lower bound L with respect to the

variational parameters W0,W
µ
1 ,W

σ
1

Eq(Z|X,A)[log p(A|Z)]−KL[q(Z|X,A)||p(Z)], (4.19)

Where KL[q()||p(·)] is the Killback-Leibler divergence between q(·) and p(·).
The authors also take a Gaussian prior for p(Z) =

∏
i p(zi) =

∏
iN(zi|0, I)



Chapter 4. Learning In Knowledge Graphs 40

4.5 Chapter Conclusion

Section 4.2 and Section 4.3 have discussed the main methods of graph and latent

feature methods, used to model a knowledge graph and perform link prediction.

Section 4.4 discusses recent methods which can be seen as a hybrid between a

graph and latent feature models. Section 4.4.2 and Section 4.4.3 discuss the

application of variational inference in learning a few of the hybrid models.
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Chapter 5

Related Work

5.1 Outline

We will first discuss related work to Variational Knowledge Graphs in Section 5.2,

then summarise how our model differs from all the related approaches.

5.2 Previous Work

Motivated by the fact that previous procedures for matrix factorisation do not

take into account the full posterior distribution, the authors of [Lim, 2007] decided

to investigate variational matrix factorisation method, focused on collaborative

filtering. In later years, authors improved this process to larger [Salakhutdinov

and Mnih, 2008] and more complicated temporal tensors[Xiong et al., 2010].

Then these techniques were extended to factorise word semantic representations

[Zhang et al., 2014a]. However, these techniques are not typically applied to

knowledge graphs, due to the size of the tensors.

Variational Deep Learning has seen great success in areas such as parametric/non-

parametric document modelling [Miao, Grefenstette, and Blunsom, 2017,Miao,

Yu, and Blunsom, 2016] and image generation [Kingma and Welling, 2013].

Stochastic variational inference has been used to learn probability distributions

over model weights [Blundell et al., 2015], which the authors named ”Bayes

By Backprop”, as well as proven powerful enough to train deep belief networks

[Vilnis and McCallum, 2014], by improving upon the stochastic variational

bayes estimator [Kingma and Welling, 2013], using general variance reduction

techniques.
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Previous work has been done to re-frame word embeddings in a Bayesian

framework [Zhang et al., 2014b,Vilnis and McCallum, 2014], as well as re-frane

graph embeddings in a Bayesian framework [He et al., 2015]. However, these

methods are expensive to train due to the evaluation of complex tensor inversions.

Recent work by the authors of [Barkan, 2016,Bražinskas, Havrylov, and Titov,

2017] show that it is possible to train word embeddings through a VB [Bishop,

2006a] framework.

KG2E [He et al., 2015] proposed a probabilistic embedding method for modelling

the uncertainties in KGs. However, this was not a generative model. The authors

of [Xiao, Huang, and Zhu, 2016] argue they created the first generative model

for knowledge graph embeddings. Firstly, this work is empirically worse than

a few of the generative models built under our proposed framework. Secondly,

their method is restricted to a Gaussian distribution prior, whereas we can use

this, as well as any other prior that permits a re-parameterisation trick — such

as the von-Mises distribution.

Later, the authors of [N. Kipf and Welling, 2016] propose a generative model

for graph embeddings. However, their method lacks scalability as it requires

the use of the full adjacency tensor of the graph as input. Secondly, our work

differs from [N. Kipf and Welling, 2016] as they work with uni-relational data,

whereas we create a framework for many variational generative models over

multi-relational data.

Recent work by the authors of [Chen et al., 2018] led to successfully constructing

a variational path ranking algorithm, a graph feature model. This work differs

from ours for two reasons. Firstly, it does not produce a generative model for

knowledge graph embeddings. Secondly, their work is a graph feature model,

with the constraint of at most one relation per entity pair, whereas our model is

a latent feature model with a theoretical unconstrained limit on the number of

existing relationships between a given pair of entities the model can process.

In summary, our work differs from all previously proposed generative knowledge

graph methods, as we propose a framework for creating a highly scalable multi-

relational generative model for embeddings knowledge graphs. These models

are flexible enough to learn any prior distribution over the embeddings which

permits a re-parametrisation trick, as well as use any scoring function that

allows maximum likelihood estimation of the parameter. Our contribution

can also be viewed as creating a family potential function (see Section 4.2),

which measures the approximate similarity between three distributions, using a

sampling technique.
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Chapter 6

Method

6.1 Outline

In this chapter, we introduce the theory behind the two proposed probabilistic

models. Section 6.3 & Section 6.4 define both models and then derive their

Evidence Lower Bound. Section 6.5 discusses the methods used to scale the

models and reduce computation cost. Section 6.6 introduces an alternative

method to linearly distributing the KL divergence across mini-batches. All

methods introduced in this chapter later experimented with in Chapter 7.

6.2 Link Prediction: Revisited

Given an observation matrix Xj ∈ R||E||×||E||, for the j’th predicate, where each

element xj ∈ Xj is a Bernoulli distributed random variable , with probability

pj, i.e. we have xj is a binary random variable indicating whether a connection

exists.

Ideally, we want to decompose Xj to discover latent factors, i,e. Xj ≈ ERjE

such that; E ∈ Rκ×||E|| represents the entity latent space, R ∈ Rκ×||P || is an

asymmetric matrix defining the interactions of the latent components, ||P ||
denotes the number of predicates, κ represents the latent dimension and ||E||
the number of entities and Rj refers to the j’th column of R.

Given a triple (i, j, k) ∈ Dataset, otherwise known as a fact, we can approximate

the binary value of subject i being connected through predicate j to object k

using DistMult [Yang et al., 2014] by xi,j,k ≈< EiRjEk >= EiRjE
T
k .
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6.3 Model A

Algorithm 1 Variational Inference for Embedding Knowledge Graphs

Model A

for ent = 1, . . . , ||E||:
eent ∼ G(µent, σent)
end for
for pred = 1, . . . , ||P||:
rpred ∼ G(Ωpred, ρpred)
end for
for {i, j, k} ∈ Dataset:
xi,j,k ∼ Bern(Θ(score(ei, rj, ek))).
end for

Moving into a probabilistic setting, in this section we will derive our first gener-

ative model: Model A. First assume that the knowledge graphs are generated

according to the following generative model. We place independent priors on

each row vector p in E and R, e.g., pθ(ep) = G(ep; 0I) and pθ(rp) = G(rp; 0I).

Define a variational posterior distribution over each column vector p by qφ(ep) =

G(ep;µp, σ
2
pI) and qφ(rp) = G(rp; Ωp, ρ

2
pI). Where µp, σp,Ωp, ρp ∈ Rn and I ∈

Rnxn is the Identity matrix. Note I enforces the assumption that vectors have

isotropic co-variance priors.

ei ∼ G(µi, σ
2
i I)

rj ∼ G(Ωj, ρ
2
jI)

ek ∼ G(µk, σ
2
kI)

(6.1)

Where ei ∈ Rn as the latent subject vector, rj ∈ Rn as the latent predicate

vector and ek ∈ Rn as the latent object vector. We can define our variational

parameters φ by;

φ =


(µi, σ

2
i I) ∈ ωi,

(Ωj, ρ
2
jI) ∈ ωj,

(µk, σ
2
kI) ∈ ωk,

(6.2)

Θ(x) =
1

1 + e−x
(6.3)
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The probability of a triple is given by the logistic inverse link function Θ(x),

applied to the score acquired from the chosen score function. In this example, we

will use the score function DistMult. We will then refer to this as Variational

DistMult (Model A).

pθ(xi,j,k = 1) = Θ(score(ei, rj, < ej)) = Θ(< ei, rj, < ej >) (6.4)

and

pθ(xi,j,k = 0) = Θ(−score(ei, rj, ek)) = (1−Θ(score(ei, rj, ek)))

= (1−Θ(< ei, rj, ek >))
(6.5)

xi,j,k

ei

ej

θ

θ

rk

ωi

ωk

ωj

i = 1..||E||

k = 1..||E||

j = 1..||P ||

Figure 6.1: Model A: Graphical model for the proposed fac-
torisation scheme. Solid lines denote the generative model
pθ(ei)p

θ(rj)p
θ(ek)pθ(xi,j,k|ei, rj , ek), dashed lines denote the vari-

ational approximation qφ(ei), q
φ(rj), q

φ(ek) to the intractable
posterior pθ(ei), p

θ(rj), p
θ(ek). Where the variational parameters

φ = {ωsubject, ωpredicate, ωobject} are learned.

Evidence Lower Bound Derivation

We would now like to derive the variational objective to optimise directly. To

do this, we start by maximising the joint probability for Model A (Fig 6.1).
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pθ(X,E,R) =
∏
i,j,k

pθ(xi,j,k|ei, rj, ek)
||E||∏
i′=1

pθ(ei′)

||P ||∏
j′=1

pθ(rj′) (6.6)

So we can express the marginal as

pθ(X) =

∫ ∏
i,j,k

pθ(xi,j,k|ei, rj, ek)
||E||∏
i′=1

pθ(ei′)

||P ||∏
j′=1

pθ(rj′) (6.7)

Which is the same as maximising the log-likelihood,

log pθ(X) = log

∫ ∏
i,j,k

pθ(xi,j,k|ei, rj, ek)
||E||∏
i′=1

pθ(ei′)

||P ||∏
j′=1

pθ(rj′)

= log

∫
pθ(X|E,R)pθ(E)pθ(R)dE,R

(6.8)

Now multiply by our mean field (Section 2.4.4) variational distribution 1 =
qφ(E,R)
qφ(E,R)

= qφ(E)qφ(R)
qφ(E)qφ(R)

.

= log

∫
pθ(X|E,R))pθ(E)

qφ(E)

qφ(E)
)pθ(R)

qφ(R)

qφ(R)
dE,R (6.9)

Using the definition of the expectation,

= logEqφ [pθ(X|E,R))
pθ(E)

qφ(E)

pθ(R)

qφ(R)
] (6.10)

Using Jensen’s inequality due to the logarithm’s concavity log(Eqφ [P(x)]) ≥
Eqφ [log(P(x))]) [Jensen, 1906],

≥ Eqφ [log(pθ(X|E,R)
pθ(E)

qφ(E)

pθ(R)

qφ(R)
)] (6.11)

= Eqφ [log(pθ(X|E,R)) + log(
pθ(E)

qφ(E)
) + log(

pθ(R)

qφ(R)
)] (6.12)

= Eqφ [log(pθ(X|E,R))]− Eqφ [log
qφ(E)

pθ(E)
)]− Eqφ [log

qφ(R)

pθ(R)
)] (6.13)
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= Eqφ [log(pθ(X|E,R))]− Eqφ [log(
qφ(E)

pθ(E)
)]− Eqφ [log(

qφ(R)

pθ(R)
)] (6.14)

We can obtain an estimate for Eqφ [log(pθ(·))], using the reparametrisation trick

allows us to estimate the expectation over our variational distribution qφ via an

unbiased estimator (as detailed in Section 2.5.2 ).

= log(pθ(X|E,R))− Eqφ [log(
qφ(E)

pθ(E)
)]− Eqφ [log(

qφ(R)

pθ(R)
)] (6.15)

However, this induces two restrictions, as stated by Kingma et al. [Kingma and

Welling, 2013].

1. Using a differentiable encoding function on the input, such as the embed-

ding look-up function we use.

2. We are justified in only taking one sample to approximate the posterior,

dependent on using a large batch size. However, if in a situation where

the graph batch sizes are required to be small, an average gradient from

multiple posterior samples may be required to obtain better posterior

estimates.

Using the definition of KL-divergence (Eq 6.16) we obtain the loss function (LA)

for Model A.

DKL(qφ(e)‖pθ(e)) =

∫
e

qφ(e) log
qφ(e)

pθ(e)
(6.16)

LA = (log pθ(X|E,R)−De
KL(qφ(E)‖pθ(E))−Dr

KL(qφ(R)‖pθ(R)) (6.17)

Based on our prior assumptions and the results from Section 2.4.2, we can

calculate the DKL term explicitly, for the entity (De
KL) and relation (Dr

KL)

posterior distributions.

−De
KL(qφ(ep)||pθ(ep)) =

1

2

D∑
d=1

(1 + (log(σ2
p,d))− (µp,d)

2 − (σ2
p,d)) (6.18)

Similarly,
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−Dr
KL(qφ(rp)||pθ(rp)) =

1

2

D∑
d=1

(1 + log(ρ2
p,d)− (Ωp,d)

2 − (ρ2
p,d)) (6.19)

Returning to our loss function in Eq (6.17), we now have

LA =
∑
i,j,k

[(log pθ(xi,j,k|ei, rj, ek)−
1

2

∑
i

D∑
d=1

(1 + (log(σi,d)
2)− (µi,d)

2 − (σ2
i,d))

− 1

2

∑
j

D∑
d=1

(1 + (log(ρj,d)
2)− (Ωj,d)

2 − (ρj,d)
2)]

(6.20)

Substituting in our generative model log pθ(xi,j,k|ei, rj, ek)=(− log(1 + exp(−· <
ei, rj, ek >)), we obtain the regularised log likelihood term.

LA =
∑
i,j,k

ELBOAi,j,k =
∑
i,j,k

xi,j,k(− log(1 + exp(−· < ei, rj, ek >))

(1− xi,j,k)(1− (− log(1 + exp(−· < ei, rj, ek >))))+

− 1

2

∑
i

D∑
d=1

(1 + (log(σ2
i,d))− (µi,d)

2 − (σ2
i,d))

− 1

2

∑
j

D∑
d=1

(1 + (log(ρ2
j,d))− (Ωj,d)

2 − (ρ2
j,d)

(6.21)

6.4 Model B

Algorithm 2 Variational Inference for Embedding Knowledge Graphs

Model B
for {i, j, k} ∈ Dataset:
ei ∼ G(µi, σi)
rj ∼ G(Ωj, ρj)
ek ∼ G(µk, σk)
hi,j,k ← [ei, rj, ek]
xi,j,k ∼ Bern(Θ(score(hi,j,k))).
end for
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We will now purpose a second generative knowledge graph model: Model B. To

derive Model B, we assume that the knowledge graphs are generated according

to the following generative model. In a similar process to Section 6.3, we first

place independent priors on each row vector p in E and R, e.g pθ(ep) = G(ep; 0I)

and pθ(rp) = G(rp; 0I).

We then define our variational posterior distribution over each column vector p by

qφ(ep) = G(ep;µp, σ
2
pI) and qφ(rp) = G(rp; Ωp, ρ

2
pI). Where µp, σp,Ωp, ρp ∈ Rn

and I ∈ Rnxn is the Identity matrix.

We then view each triple as a latent variable, as shown in Fig 6.2. This leads us

to having one latent variable per triple, named hi,j,k. Similarly, we can place a

Gaussian prior pθ(hi,j,k) = G(hi,j,k; 0I) and corresponding variational posterior

distribution

qφ(hi,j,k) = G(hi,j,k;

µiΩj

µk

 ,
σi 0 0

0 ρj 0

0 0 σk

) (6.22)

hi,j,k =


ei ∼ G(µi, σ

2
i I)

rj ∼ G(Ωj, ρ
2
jI)

ek ∼ G(µk, σ
2
kI)

(6.23)

hi,j,k ∼ G


µiΩj

µk

 ,

σi 0 0

0 ρj 0

0 0 σk


 (6.24)

The probability of a triple is similarly given by the logistic inverse link function

Θ(x), of the score achieved through computing the score function of the vectors

ei, rj, ek, which are recovered from corresponding vector hi,j,k. Below we show

the likelihood calculation explicitly using the DistMult scoring function, for

further details we suggest revisiting Section 4.2. Similarly, we will refer to this

as Variational DistMult (Model B).

pθ(xi,j,k = 1) = Θ((score(hi,j,k)) = Θ(score(ei, rj, ek))

= Θ(< ei, rj, ek >)
(6.25)

Similarly,
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pθ(xi,j,k = 0) = Θ(−score(hi,j,k))

= (1−Θ(−score(ei, rj, ek))) = (1−Θ(− < ei, rj, ek >))
(6.26)

xi,j,k

ei

ej

θ

θ

rk

ωi

ωk

ωj

i = 1..||E||

k = 1..||E||

j = 1..||P ||

Figure 6.2: Model B: Graphical model for proposed fac-
torization scheme. Solid lines denote the generative model
pθ(ei)p

θ(rj)p
θ(ek)pθ(xi,j,k|ei, rj , ek), dashed lines denote the vari-

ational approximation qφ(ei), q
φ(rj), q

φ(ek) to the intractable
posterior pθ(ei), p

θ(rj), p
θ(ek). Where the variational parameters

φ = {ωsubject, ωpredicate, ωobject} are learned.

Evidence Lower Bound Derivation

We will now derive the ELBO for Model B 6.2. We want to maximise the

joint distribution of our model. We can express the joint distribution from the

graphical model shown in Fig 6.2 as:

pθ(X,H) =

||E||∏
i=1

||P ||∏
j=1

||E||∏
k=1

pθ(xi,j,k|hi,j,k)pθ(hi,j,k) (6.27)

Then taking the marginal we get,
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pθ(X) =

∫ ||E||∏
i=1

||P ||∏
j=1

||E||∏
k=1

pθ(xi,j,k|hi,j,k)pθ(hi,j,k)

=

∫
pθ(X|H)pθ(H) dH

(6.28)

This is the same as maximising the log marginal, hence we apply the log function

to both sides of the equation,

log pθ(X) = log

∫
pθ(X|H)pθ(H) dH (6.29)

Now multiply by our mean field (Section 2.4.4) variational distribution 1 = qφ(H)
qφ(H)

,

approximating the true posterior pθ(H,X)

= log

∫
pθ(X|H)pθ(H)

qφ(H)

qφ(H)
dH (6.30)

Using the definition of the expectation, with Eqφ(H) = Eqφ for simplicity on the

expectation.

= logEqφ [pθ(X|H)
pθ(H)

qφ(H)
] (6.31)

Using Jensen’s inequality due to the logarithm’s concavity log(Eqφ [P(x)]) ≥
Eqφ [log(P(x))]) [Jensen, 1906],

≥ Eqφ [log pθ(X|H)
pθ(H)

qφ(H)
] (6.32)

= Eqφ [log pθ(X|H) + log pθ(H)− log qφ(H)] (6.33)

= Eqφ [log pθ(X|H)]− Eqφ [log
qφ(H)

pθ(H)
] = ELBOB (6.34)

Which we can obtain an estimate for, using the reparametrisation trick, which

allows us to estimate the expectation over our variational distribution qφ.

≈ log pθ(X|H)− Eqφ [log
qφ(H)

pθ(H)
] (6.35)
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This induces the two restrictions on the inference network and sampling scheme

as previously stated in Model A’s derivation (Section 6.3). Using the definition

of KL-divergence we now have an alternative variational lower bound for Model

B (LB).

LB = log pθ(X|H)−DB
KL(qφ(|H)‖pθ(H)) (6.36)

Based on our prior assumptions, when both the prior pθ(hi,j,k) = G(0I) and

posterior approximation qφ(hi,j,k|xi,j,k) are assumed Gaussian, we can produce a

closed form solution to the KL term (as proved earlier in Section 2.4.2).

−DB
KL(qφ(hi,j,k)||pθ(hi,j,k))

=
1

2

∑
(1 +

∑
(

log σ2
i,d

log ρ2
j,d

log σ2
k,d

)−
∑µ

2
i,d

Ω2
j,d

µ2
k,d

−∑(

σ
2
i,d

ρ2
j,d

σ2
k,d

)

=
1

2

D∑
d=1

(1 + log(σ2
i,d) + log(ρ2

j,d) + log(σ2
k,d)

− (µi,d)
2 − (Ωj,d)

2 − (µk,d)
2 − (σ2

i,d)− (ρ2
j,d)− (σ2

k,d))

(6.37)

Returning to our loss function in Eq (6.36),

LB =
∑
i,j,k

(log pθ(xi,j,k|hi,j,k)−DB
KL(qφ(hi,j,k)||pθ(hi,j,k)) (6.38)

We now have

LB =
∑
i,j,k

[(log pθ(xi,j,k|hi,j,k)−
1

2

D∑
d=1

(1 + log(σ2
i,) + log(ρ2

j,d) + log(σ2
k,d)

− (µi,d)
2 − (Ωj,d)

2 − (µk,d)
2 − (σ2

i,d)− (ρ2
j,d)

2 − (σ2
k,d))]

(6.39)

Substituting in our generative model log pθ(xi,j,k|hi,j,k)=(− log(1 + exp(−· <
ei, rj, ek >)), we obtain the regularised log likelihood term.
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LB =
∑
i,j,k

ELBOBi,j,k =
∑
i,j,k

xi,j,k(− log(1 + exp(−· < ei, rj, ek >))

(1− xi,j,k)(1− (− log(1 + exp(−· < ei, rj, ek >))))+

− 1

2

D∑
d=1

(1 + log(σ2
i,) + log(ρ2

j,d) + log(σ2
k,d)

− (µi,d)
2 − (Ωj,d)

2 − (µk,d)
2 − (σ2

i,d)− (ρ2
j,d)− (σ2

k,d))]

(6.40)

6.5 Large Scale Variational Inference

Now that we have defined both the generative models, we will now discuss two

methods available to scale these graphs to large-scale problems.

The three smaller datasets contain under two million trainable triples under

LCWA, as shown in Table 3.2, while the three larger datasets contain billions

of triples. We attempted to train our model on the smaller datasets, and

after almost a week of unfinished training, we were forced to explore faster

approximate methods.

We will discuss two methods that we employed for large-scale variational inference

in this chapter. A technique used to approximate the evidence lower bound

across all examples, by Bernoulli sampling, and a negative sampling method.

6.5.1 Negative Sampling

It has been shown that negative sampling is an approximation to noise-contrastive

estimation [Mikolov et al., 2013], which justifies the application of this method.

For the classic approach of negative sampling, we will maximise our log-likelihood

over all positive facts, as well minimise our log-likelihood over a subset of

uniformly selected negative facts. The authors of [Mikolov et al., 2013] also

explain that the optimal parameters learnt from negative sampling will generally

differ from the optimal parameters learnt from using the full log-likelihood.

6.5.2 Bernoulli Sampling

We can rephrase the problem of calculating the ELBO as approximating a

sum by sampling, which we can do due to the compositional nature of the
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ELBO. As shown previously, computing the full ELBO overall positive and

negative examples is computationally expensive; even for the smaller datasets,

and unfeasible for the bigger datasets. Consider the general problem of summing

over a series of elements.

Z =
C∑
c=1

zc (6.41)

We can estimate this summation using either importance sampling; as discussed

in Chapter 2, or Bernoulli sampling. Bernoulli Sampling is the preferred alter-

native for large summations[Botev, Zheng, and Barber, 2017], as you sample

without replacement, whereas importance sampling samples with replacement.

We rephrase our example sum from Eq (6.41) as;

Z =
C∑
c=1

zc = Es∼b[
C∑
c=1

sc
bc
zc] (6.42)

with sc ∼ Bernoulli(bc). The positive of this sampling method is no samples

are repeated. Using a single joint sample, we get an alternative approximation

to our summation.
Z ≈

∑
c:sc=1

zc
bc (6.43)

6.5.3 Estimating The Evidence Lower Bound By Bernoulli

Sampling

We introduce Bernoulli ELBO sampling, an alternative justification to the

typically used equation for stochastic variational inference (Section 2.4.5). The

ELBO for Model A (Section 6.3) and Model B (Section 6.4) can be decomposed

into two summations over the set of positive (y+) and negative (y−) facts.

p(D) ≥
∑
τ∈y

ELBOτ

=
∑
τ+∈y+

ELBOτ+ +
∑
τ−∈y−

ELBOτ−

= Es+τ ∼b+ [
∑
τ+∈y+

s+
τ

b+
ELBOτ+ ] + Es−τ ∼b− [

∑
τ−∈y−

s−τ
b−
ELBOτ− ]

(6.44)
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If we let the full dataset count be denoted as usual by |D|, we can split this

up into positive and negative facts |D| = |D|+(2(|E| − 1)) + |D+|= 2|D|+|E|,
Where |D−| = |D+|(2(|E| − 1)) is the maximum number of negatives generated

under LCWA. We define |N−| to be the number of negatives facts sampled per

positive. Now if we set b+ = |D+|
|D+| = 1, where |D+| is total count of positive facts.

We also set b− = |D+||N−|
|D−| , we get

p(D) ≥
∑
τ∈y

ELBOτ

=
∑

τ+:s+τ =1

ELBOτ+
b+

+
∑

τ−:s−τ =1

ELBOτ−
b−

=
∑

τ+:s+τ =1

ELBOτ+ +
∑

τ−:s−τ =1

|D−|
|D+||N−|

ELBOτ−

=
∑
τ+

ELBOτ+ +
∑

τ−:s−τ =1

|D−|
|D+||N−|

ELBOτ−

=
∑
τ+

ELBOτ+ +
∑

τ−:s−τ =1

2(|E| − 1)

|N−|
ELBOτ−

(6.45)

Now if we set |N−| = 1, so we only generate one negative fact per positive, we

get

p(D) ≥
∑
τ+

ELBOτ+ +
∑

τ−:s−τ =1

2(|E| − 1)ELBOτ− (6.46)

Eq (6.46) is an intuitive result, and this claims that if we take the same number

of negatives in a dataset as the observed positive triples, we scale the negative

ELBO to the expected total loss overall negative examples that we could have

used under LCWA. As a result, this is a tremendous computational save, as

it reduces the complexity to calculate the ELBO from the previous O(|E||D+|)
to O(|D+|). This yields the same result Section 2.4.5 as is typically seen in

stochastic variational inference literature [Zhang et al., 2017] for estimating the

log-likelihood of a model.
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6.6 Mini-batch Kullback–Leibler Divergence

We will now discuss an alternative method for distributing the KL divergence

across mini-batches. Returning to the KL divergence term for Model A Sec-

tion 6.17, when using mini-batches we can linearly distribute the KL regularisa-

tion term. As typically seen, with the KL term over M batches equal to Eq (6.47)

per each batch. Or we can non-linearly distribute the KL regularisation term

across each mini-batch.

DKL =
1

M
(De

KL +Dr
KL) (6.47)

To non-linearly distribute the KL term (DKL), we can adjust the KL divergence

with a compression cost (πi) at each iteration i, as recommended by the authors of

[Blundell et al., 2015]. Using a non-linear KL weight ˆDKL = DKLπ̂i, rather than

a linear weight ˆDKL = DKL
Batch No.

, is theoretically justified as the KL term is only

required to be distributed across the whole batch such that
∑
π̂iDKL = DKL.

Hence we can rewrite ˆDi
KL

ˆDi
KL = DKL · π̂i (6.48)

The critical feature of the compression cost proposed by [Blundell et al., 2015]

is an exponentially decreasing KL term across mini-batches.

πi =
2M−i

2M
(6.49)

We propose an alternative whilst maintaining exponentially decreasing KL term

across mini-batches. We had to create this alternative due to the 2M causing

numerical issues with large M . We first compute M exponentially decreasing

numerically stable values.

πi = exp ((M − 1− i) · log(2−M) · log 2) (6.50)

Then applying normalisation so that
∑
π̂i = 1

π̂i =
πi∑
πi

(6.51)

So πi = 1 for i=0 then exponentially decays at each iteration towards 0.
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Implementation Details

We refer the reader to the Appendix B for further implementation details of the

models.

6.7 Chapter Conclusion

Section 6.3 and Section 6.4 introduce the two proposed models of this thesis. The

reason we introduce and implement both Model A and Model B, regardless of the

many similarities, was due to the difficulty in concluding which framework would

yield the highest performing models. We argue that both models are trained

by amortised variational inference, as described in Section 2.4.6, as having an

embedding look-up function to the distribution parameters is a deterministic

operation.

Notice the look-up function in this application is equivalent to having two (amor-

tised) linear inference networks. One entity linear inference network mapping a

one hot encoded subject or object vector to the distribution parameters over

the entities latent embedding. The second a relation linear inference network

mapping a one hot encoded relation vector to the distribution parameters over

the relations latent embedding. This alternative and equivalent interpretation of

the models is more apparent when looking at the architecture (Fig6.3) of Model

A and Model B.

Section 6.5 introduces an alternative justification for using stochastic variational

inference (Section 2.4.5) which, to the best of our knowledge, is the first SVI

justification under a Bernoulli sampling framework. Lastly, Section 6.6 describes

a numerically stable alternative KL divergence mini-batches weighting scheme.
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Figure 6.3: Model A&B: Variational Inference for Embedding
Knowledge Graphs



59

Chapter 7

Experiments & Results

7.1 Outline

This chapter presents results experiments on Model A and Model B. Section 7.2

provides an introduction to the general experiment set up. Section 7.3 presents

the results from latent feature scoring functions. Section 7.6 and Section 7.7

discuss methods used for large-scale stochastic variational inference. Section 7.8

experiments with the compression cost (re-weighting the KL regularisation term

across mini-batches). Section 7.6 presents the benefits of using linear warm-up

(zero out the KL term for x epochs), which leads to improved results compared

with existing literature.

7.2 Experimental Set Up

Each KB dataset is separated into 80 % training facts, 10% development facts,

and 10% test facts. During the evaluation, for each fact, we include every

possible corrupted version of the fact under the local closed world assumption,

such that the corrupted facts do not exist in the KB. Subsequently, we make a

ranking prediction of every fact and its corruptions, summarised by mean rank

and filtered hits@m. Mean rank Eq (7.1) measures the average rank correct

observations (facts) have been assigned. A value of 1.0 being the top mean rank

a model could theoretically achieve, and E (number of entities) being the worst

mean rank a model could achieve. Hits@m measures for the amount of true

subject/ objects predicted in the top m ranked predictions for each evaluated

fact. Filtered Hits@m measures the hits@m only for the positive facts and

ignores the hits@m for the negative facts. E.g. Filtered Hits@1 would be the
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proportion of true test facts which were assigned the highest ranking compared

with either the subject or object corrupted by all other entities.

For all experiments in Chapter 7, we have selected the best performing model

on a validation set and then report the results from evaluating that model on

the test set.

mean rank = 1
N

∑
rank (7.1)

7.3 Non-generative Models

We first produced the non-probabilistic model results, to ensure our implemen-

tations of the scoring functions aligned with recent literature. We train using

ADAM [Kingma and Ba, 2014] and initialise embedding mean vectors using

Glorot’s initialiser [Glorot and Bengio, 2010]. We run each experiment over 500

epochs and validate every 50 epochs. We evaluated all combinations from the

following architecture options;

• Scoring functions: TransE, DistMult and ComplEx.

• Datasets: ’FB15K-237’, ’Kinship’, ’Nations’, ’UMLS’, ’WN18’, ’WN18RR’.

• Latent embedding dimension: 200,250,300.

• Adam epsilon decay rate of: 10−1,10−3,10−5,10−7,10−9.

• Adam learning rate: 10−1,10−2,10−3,10−4.

• Batch Sizes : 10,100.

• Negative Samples: 1,5,20.

The reason we selected these scoring functions is two-fold; (i) as they are used

in the later variational framework, (ii) as these include the highest performing

scoring function ComplEx, as well as previous state-of-the-art scoring functions

DistMult & TransE.

We looked at four different baseline architectures during the baseline optimisation

stage.

1. Models trained with maximum likelihood estimation and regularised by an

L2 weight decay term with lambda weight decay parameter set to 0.001,

as successfully used in [Trouillon et al., 2016].
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Dataset Non-generative Models - Experiment 7.3
Mean Rank Filtered Hits @
Filter Raw 1 3 10

Kinship

TransE 18 23 0.181 0.344 0.556
DistMult 5 12 0.379 0.596 0.869
ComplEx 2 10 0.776 0.939 0.988
ComplEx (Trouillon et al., 2016) - - 0.70 0.89 0.99
NTPλ (RocktäschelAndRiedel, 2017) - - 0.76 0.82 0.89

Nations

TransE 5 8 0.246 0.458 0.970
DistMult 2 6 0.597 0.808 0.980
ComplEx 2 7 0.580 0.826 0.990
ComplEx (Trouillon et al., 2016) - - 0.62 0.84 0.99
NTPλ (RocktäschelAndRiedel, 2017) - - 0.59 0.89 0.99

UMLS

TransE 7 17 0.351 0.631 0.840
DistMult 5 19 0.606 0.746 0.872
ComplEx 1 18 0.897 0.979 0.995
ComplEx (Trouillon et al., 2016) - - 0.82 0.96 1.00
NTPλ (RocktäschelAndRiedel, 2017) - - 0.87 0.98 1.00

WN18

TransE 2088 2101 0.268 0.445 0.565
DistMult 813 827 0.754 0.911 0.939
ComplEx 708 725 0.936 0.944 0.946
ComplEx (Trouillon et al., 2016) - - 0.939 0.944 0.947
ConvE (Dettmers et al., 2017) 504 - 0.935 0.947 0.955

WN18
RR

TransE 3441 3454 0.139 0.251 0.413
DistMult 8595 8595 0.367 0.390 0.412
ComplEx 7744 7758 0.408 0.459 0.474
ComplEx (Trouillon et al., 2016) 5261 - 0.41 0.46 0.51
ConvE (Dettmers et al., 2017) 5277 - 0.39 0.43 0.48

FB15K
-257

TransE 1386 1510 0.129 0.203 0.295
DistMult 355 501 0.187 0.282 0.400
ComplEx 324 483 0.195 0.294 0.420
ComplEx (Trouillon et al., 2016) 339 - 0.159 0.258 0.417
ConvE (Dettmers et al., 2017) 246 - 0.239 0.350 0.491

Table 7.1: Non-generative Model Results

2. Models trained with maximum likelihood estimation and regularised by

an embedding projection onto the unit sphere or unit cube.

3. Models trained with a hinge loss, of varying margin sizes such as 1, 2, 3, 4, 5

and regularised by a lambda weight decay term with default parameter

set to 0.001.

4. Models trained with a hinge loss, of varying margin sizes such as 1, 2, 3, 4, 5

and regularised by an embedding projection onto the unit sphere or unit

cube.

In general, the results are shown in Table 7.1 highlight the dominance of

ComplEX across all datasets. We were also able to improve upon previously

published ComplEX; Filtered Hits@1, and Filtered Hits@3 results on Kinship

and UMLS, as well as improving upon the ComplEX Filtered Hits@1 results on

Nations.
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7.4 Generative Model Hyper-parameters

For the purposed generative models, we searched over the same subset of hyper-

parameters, scoring functions and datasets as Section 7.3. We train using ADAM

[Kingma and Ba, 2014] and initialise our mean values using Glorot’s initialiser

[Glorot and Bengio, 2010] with our variance values initialised to 1
embedding size

and We also set a random seed equal to zero for all numpy and tensorflow

random operations, for reproducibility purposes. We run each experiment over

500 epochs and validate every 50 epochs.

• Scoring functions: Variational TransE, Variational DistMult and Varia-

tional ComplEx.

• Datasets: ’FB15K-237’, ’Kinship’, ’Nations’, ’UMLS’, ’WN18’, ’WN18RR’.

• Latent embedding dimension: 200,250,300.

• Adam epsilon decay rate of: 10−3,10−5,10−7.

• Adam learning rate: 10−1,10−2,10−3.

• Batch Sizes : 1, 100 and 1000.

• Gradient clipping by norm: True or False.

Gradient clipping was used to limit the total variance of our gradients for more

stable learning. The constraint of enforcing variance vectors to sum to one was

also explored.

7.5 Maximising The Evidence Lower Bound:

Full Batch

We attempted to train both Models A&B on the full batch of negative and

positive examples. This lead to four days of training on the smaller datasets

with no further progress than 30 epochs. This failed attempt motivated the use

of large-scale variational inference methods (Section 6.5).
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7.6 Estimating The Evidence Lower Bound By

Bernoulli Sampling

In this experiment, we investigate the use of Bernoulli sampling for estimating

the evidence lower bound for Model A&B.

7.6.1 Model A

Dataset Model A - Experiment 7.7.1 (BS)
Mean Rank Filtered Hits @
Filter Raw 1 3 10

Kinship
Variational TransE 38 43 0.032 0.074 0.200

Variational DistMult 5 11 0.335 0.568 0.881
Variational ComplEx 3 9 0.576 0.808 0.961

Nations
Variational TransE 5 8 0 0.488 0.922

Variational DistMult 2 7 0.597 0.808 0.995
Variational ComplEx 2 7 0.52 0.776 0.993

UMLS
Variational TransE - - - - -

Variational DistMult - - - - -
Variational ComplEx - - - - -

WN18
Variational TransE 785 786 0.415 0.866 0.877

Variational DistMult 761 774 0.694 0.891 0.922
Variational ComplEx 911 925 0.929 0.937 0.942

WN18
RR

Variational TransE - - - - -
Variational DistMult 7483 7497 0.387 0.412 0.437
Variational ComplEx 7788 7801 0.397 0.417 0.440

FB15K
-257

Variational TransE 940 1062 0.088 0.138 0.212
Variational DistMult 1224 1367 0.160 0.247 0.355
Variational ComplEx 1315 1455 0.170 0.259 0.371

Table 7.2: Model A Bernoulli Sampling ELBO Estimation

Table 7.2 shows that the Bernoulli sampling method for estimating the evidence

lower bound using only one negative sample was effective. We see improvement in

the DistMult function when used in conjunction with our variational framework

on WN18RR, leading to improved Hits@1, Hits@3 and Hits@10 and competitive

results on other datasets.

7.6.2 Model B

Table 7.3 shows poor performance across almost all datasets apart from Nations

when using Bernoulli sampling to estimate the evidence lower bound. We believe

this to be down to Model A’s latent variables being regularised less intensely

than Model B’s, however it is inconclusive.
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Dataset Model B - Experiment 7.6.2 (BS)
Mean Rank Filtered Hits @

Filter Raw 1 3 10

Kinship
Variational TransE (GC + Proj) 48 53 0 0.022 0.110

Variational DistMult (GC + Proj) 48 53 0.0178 0.044 0.103
Variational ComplEx (GC + Proj) 47 52 0.006 0.023 0.095

Nations
Variational TransE(GC + Proj) 5 7 0 0.371 0.955

Variational DistMult (GC + Proj) 4 7 0.153 0.503 0.950
Variational ComplEx (GC + Proj) 5 8 0.111 0.387 0.935

UMLS
Variational TransE(GC + Proj) 60 70 0 0.021 0.049

Variational DistMult (GC + Proj) 43 56 0.030 0.074 0.236
Variational ComplEx (GC + Proj) 53 63 0.007 0.039 0.097

WN18
Variational TransE 15524 15528 0 0 0

Variational DistMult 19919 19928 0 0 0.003
Variational ComplEx 20744 20752 0 0 0.001

WN18
RR

Variational TransE 15524 15528 - - -
Variational DistMult 19919 19928 0 0.001 0.003
Variational ComplEx 20933 20941 0 0 0

FB15K
-257

Variational TransE 940 1062 0.088 0.138 0.212
Variational DistMult 6094 6215 0.007 0.010 0.019
Variational ComplEx 7287 7405 0.003 0.003 0.004

Table 7.3: Model B Bernoulli Sampling ELBO Estimation

7.7 Negative Sampling

In this experiment, we investigate the use of negative sampling for Model B. We

do not duplicate this test for Model A, as it is included in later experiments.

7.7.1 Model A

See Section 7.8 for the analysis of negative sampling with and without the

compression cost introduced in Section 6.6.

7.7.2 Model B

Similarly to Section 7.6.2, Table 7.4 shows poor performance across almost all

datasets apart from Nations when using negative sampling. We believe this

to be down to Model B’s latent variables being regularised heavily, which was

confirmed with a simple experiment of re-running Model B on WN18 with a

KL re-weighting of 1/3. This enabled Model B to learn better than it currently

does, but this is still significantly worse than Model A.
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Dataset Model B - Experiment 7.7.2 (NS)
Mean Rank Filtered Hits @

Filter Raw 1 3 10

Kinship
Variational TransE 45 49 0.004 0.269 0.283

Variational DistMult 49 54 0.001 0.003 0.104
Variational ComplEx 48 53 0.002 0.028 0.102

Nations
Variational TransE 4 7 0.104 0.567 0.933

Variational DistMult 4 7 0.157 0.522 0.960
Variational ComplEx 4 7 0.048 0.450 0.970

UMLS
Variational TransE 49 57 0.129 0.390 0.406

Variational DistMult 41 50 0.045 0.127 0.325
Variational ComplEx 51 61 0.003 0.037 0.105

WN18
Variational TransE 16983 16991 0 0 0.001

Variational DistMult 19919 19692 0 0 0.003
Variational ComplEx 20300 20307 0 0 0.001

WN18
RR

Variational TransE 16983 16991 0 0 0.001
Variational DistMult 19919 19928 0 0.001 0.003
Variational ComplEx 20849 20857 0 0 0

FB15K
-257

Variational TransE 6812 6858 0.006 0.018 0.068
Variational DistMult 5853 5974 0.006 0.012 0.022
Variational ComplEx 7287 7405 0.003 0.003 0.004

Table 7.4: Model B Negative Sampling

7.8 Mini-batch Kullback–Leibler Divergence

In this experiment the effects of negative sampling is investigated with and

without the use of a compression cost (see Section 6.6 for more information

regarding the compression cost). We perform architecture search over the

Variational DistMult, Variational ComplEx and Variational TransE scoring

functions.

7.8.1 Model A

Table 7.5 displays Model A’s promising results across all datasets and all scoring

functions. Highest results in this experiment were obtained, for the smaller

datasets, when using compression cost with negative sampling (without Bernoulli

sampling to estimate the ELBO). Generally, we find that Bernoulli sampling for

estimating the ELBO ( Section 7.6) is the better performing method across all

scoring functions on the larger datasets.
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Dataset Model A Experiment 7.8
Mean Rank Filtered Hits @

Filter Raw 1 3 10

Kinship
Variational TransE 45 50 0 0.032 0.123

Variational DistMult 5 10 0.335 0.588 0.896
Variational ComplEx 2 9 0.668 0.876 0.975

Nations
Variational TransE 5.23 8 0 0.393 0.910

Variational DistMult 2 6 0.600 0.833 0.990
Variational ComplEx 2 7 0.530 0.823 0.998

UMLS
Variational TransE 15 24 0.116 0.318 0.557

Variational DistMult 5 15 0.473 0.697 0.874
Variational ComplEx 3 16 0.555 0.811 0.950

WN18
Variational TransE 6205 6215 0.015 0.036 0.008

Variational DistMult 546 559 0.465 0.711 0.859
Variational ComplEx 619 631 0.644 0.831 0.875

WN18
RR

Variational TransE 13760 13770 0.001 0.005 0.010
Variational DistMult 6095 6108 0.267 0.361 0.421
Variational ComplEx 5775 5786 0.322 0.387 0.427

FB15K
-257

Variational TransE 2893 3016 0.067 0.121 0.196
Variational DistMult 761 889 0.096 0.143 0.358
Variational ComplEx 986 1110 0.151 0.244 0.362

Table 7.5: Model A Compression Cost

7.8.2 Model B

Model B is unable to use the compression cost as the Kullback—Leibler Diver-

gence term is not independent of the latent variables; as shown in the derivation

of Model B in Eq (6.17), thus isn’t distributed across mini-batches.

7.9 Linear warm-up

7.9.1 Model A

Motivated by the success of linear warm-up in [Bowman et al., 2016,Davidson

et al., 2018], we investigate the effects of linear warm-up applied to Model A

(a reminder we were unable to apply linear warm-up to Model B as the KL

term was not independent of the log-likelihood term, and is generated on a per

example basis).

A reminder that linear warm-up allows the model to learn without the KL term

(weight set to 0) for X epochs, then after X epochs the model instantly bring it
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in (setting the weight to 1). For this experiment, used linear warm-up to bring

the KL term into the loss function after ten epochs.

We performed architecture search over the top two performing scoring functions

previously, thus do not conduct further experiments on Variational TransE.

Dataset Model A Experiment 7.9.1
Mean Rank Filtered Hits @
Filter Raw 1 3 10

WN18
Variational DistMult 786 798 0.671 0.931 0.947
Variational ComplEx 753 765 0.934 0.945 0.952

ComplEx (Trouillon et al., 2016) - - 0.939 0.944 0.947

WN18
RR

Variational DistMult 6095 6109 0.357 0.440 0.423
Variational ComplEx 6500 6514 0.385 0.446 0.489

ComplEx (Trouillon et al., 2016) 5261 - 0.41 0.46 0.51

FB15K
-257

Variational DistMult 679 813 0.171 0.271 0.397
Variational ComplEx 1221 1347 0.168 0.260 0.369

ComplEx (Trouillon et al., 2016) 339 - 0.159 0.258 0.417

Table 7.6: Model A Linear warm-up

Table 7.6 shows improved performance across all models and datasets from using a

linear warm-up of ten epochs before introducing the KL divergence regularisation

term, compared with just using Bernoulli sampling to estimate the ELBO for

Model A as discussed in Section 7.6. We can see definite improvements on WN18

for Variational ComplEx compared with the initially published ComplEX. We

believe this due to the well-balanced model regularisation induced by the zero

mean unit variance Gaussian prior.

We ran this experiment over 500 epochs and observed that most models were

still steadily increasing in the validation Hits@1, Hits@3, Hits@5, and Hits@10.

The training also appeared more stable using Bernoulli sampling to estimate

the ELBO (with linear warm-up), than using negative sampling.

7.9.2 Model B

Due to time issues, we were unable to run this experiment on Model B. It is

likely that Model B would have performed considerably worse than Model A,

given the previous track record across all tests conducted.
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7.10 Chapter Conclusion

This chapter has shown the dominance of Model A over Model B experimentally,

across multiple datasets and scoring functions. We have also improved previously

published results of ComplEX [Trouillon et al., 2016] through further hyper-

parameter optimisation (Section 7.3), as well as providing additional performance

gains when using a Variational ComplEX model (Section 7.6), compared with

published results from the ComplEX model on WN18 [Trouillon et al., 2016].

This chapter has also shown Model A & Model B’s competitive performance to

state-of-the-art baselines across multiple datasets, highlighting future potential.
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Chapter 8

Analysis

8.1 Outline

Section 8.2 analyses two available methods for approximate inference in Model

A&B. Section 8.3 analyses the predictions from Model A in further detail.

Section 8.4 investigates the use of measuring output variance as a proxy for

predictive uncertainty. Section 8.6 analyses the mini-batch Kullback–Leibler

Divergence re-weighting. Section 8.7 visual analysis of test facts on the Nations

dataset. Section 8.8 compares the purposed models to previous state-of-the-art

multi-relational generative models. Lastly, as an ablation study is fundamental

to understanding the significance of each component in a model, Section 8.9

conducts ablation analysis on the highest performing model (Model A), on one

of the most challenging datasets (WN18RR).

8.2 Inference Methods

During inference in Model A&B, we have at least two methods that are applicable:

(i) forward sampling, (ii) use the distributional centres (means) as the scoring

estimates. The former is significantly more time-consuming, scaling in time

complexity with the number of entities, thus less attractive for large knowledge

graphs. For example, applying forward sampling for inference in the WN18

dataset: we would need to predict 40,000 entities’ score per test fact, using 100

samples would then require over four million computations per test fact, whereas

only 40,000 computations per test fact using method (ii). We select a model

previously evaluated under the first inference scheme (with results printed on

the x-axis), and plot the forward sampling predictions (using 300 samples).
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Figure 8.1: Forward Sampling Approximation

Figure 8.1 displays the second inference schemes reliable estimates to the first

inference schemes (forward sampling). This is conjectured due to the predictions

from forward sampling centring around method the second inference schemes

approximate prediction for the performance metrics; Hits@3, Hits@10.

However, Hits@1 increase in performance when using the second inference scheme

compared to forward sampling. The improvement in performance is most likely

linked with the sensitivity of ranking. However, this is inconclusive.

As a result of the improved performance from the second inference scheme, we

always chose to evaluate at test time using the mean embeddings as input into

the selected scoring function.

8.3 Link Prediction Analysis

We will now explore the predictions made by Model A; with ComplEx, trained

with Bernoulli sampling to estimate the ELBO, compression cost and linear

warm-up on the WN18RR dataset. We split the analysis into the predictions of

subject ((?, r, o)) or object ((s, r, ?)) for each test fact.

Note all results are filtered predictions, i.e., not including the predictions made

on negative examples generated under LCWA. For both subject and object

prediction results, we sort the relations in descending order from the most

substantial contribution (proportion of test set) to the least.
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8.3.1 Subject Prediction

Proportion Hits@1 Hits@3 Hits@10

hypernym 0.399170 0.091926 0.123102 0.162270
derivationally related form 0.342693 0.947858 0.956238 0.959032
member meronym 0.080728 0.007905 0.019763 0.035573
has part 0.054882 0.011628 0.058140 0.122093
instance hypernym 0.038928 0.393443 0.508197 0.713115
synset domain topic of 0.036375 0.219298 0.315789 0.464912
also see 0.017869 0.589286 0.625000 0.625000
verb group 0.012444 0.743590 0.974359 0.974359
member of domain region 0.008296 0.000000 0.038462 0.115385
member of domain usage 0.007658 0.000000 0.000000 0.000000
similar to 0.000957 1.000000 1.000000 1.000000

Table 8.1: WN18RR Subject Prediction

Table 8.1 shows that the relation ” derivationally related form”, comprising 34%

of test subject predictions, was the most accurate relation to predict for Hits@1

when removing the subject from the tested fact. Contrarily, ” member of domain region”

with zero Hits@1 subject prediction, making up less than 1% of subject test pre-

dictions. However, ” member meronym ” was the least accurate and prominent

(8% of the test subject predictions) for subject Hits@1.

8.3.2 Object Prediction

Proportion Hits@1 Hits@3 Hits@10

hypernym 0.399170 0.000000 0.014388 0.046363
derivationally related form 0.342693 0.945996 0.957169 0.959032
member meronym 0.080728 0.031621 0.047431 0.086957
has part 0.054882 0.034884 0.081395 0.139535
instance hypernym 0.038928 0.024590 0.081967 0.131148
synset domain topic of 0.036375 0.035088 0.043860 0.078947
also see 0.017869 0.607143 0.625000 0.625000
verb group 0.012444 0.897436 0.974359 0.974359
member of domain region 0.008296 0.038462 0.076923 0.076923
member of domain usage 0.007658 0.000000 0.000000 0.000000
similar to 0.000957 1.000000 1.000000 1.000000

Table 8.2: WN18RR Object Prediction

Table 8.2 displays similar results to Table 8.1, as before the relation ” derivationally related form”

was the most accurate relation to predict Hits@1. Table 8.2 differs from Table 8.1



Chapter 8. Analysis 72

as it highlights Model A’s its inability to achieve a high Hits@1 performance

predicting objects for the ” hypernym” relation, which is significantly hindering

model performance as it is the most seen relation in the test set— its involvement

in 40% of object test predictions.

Overall, the results suggest there is still a large margin for improvement, which

we conjecture to be caused by convergence to a relatively poor local minima.

However, this is inconclusive. If this were a local minima issue, attempts to

combat this could be achieved through; multiple initiations of the experiment, or

possibly an alternative initialisation scheme. The ” similar to” relation performs

desirably across both subject and object prediction. However, as there are only

three test facts involving this relation, it is almost insignificant in contribution

to the overall model performance.

8.4 Predictive Uncertainty Estimation

Motivated by the primary goals of this thesis (Section 1.1): desiring to make

confident estimations, we explore two methods for confidence estimation by;

taking the magnitude of the prediction as confidence, attempting to measuring

the models’ predictive uncertainty through output variance. This experiment

was carried out on Model A; Variational DistMult, on Nations dataset, with

the learning rate set to 10−7, an embedding size of 200, projection True and

learning rate 10−2.

8.4.1 Typical Approach

For the first confidence estimation method, we interpret the magnitude of the

prediction as the confidence, similarly interpreted in [Culotta and McCallum,

2004]. For this, we search over 1,000 coverage values between (0,1]. At each

coverage value, we implement a threshold in which predictions outside this

confidence range are discarded. We then plot these and fit a regression line of

order two, to estimate the trend. The results from the typical approach are

plotted on the same graph as the sampling approach, in Fig 8.2.



Chapter 8. Analysis 73

Algorithm 3 Model A Confidence Estimation via Output Variance

for {i, j, k} ∈ Dataset:
xall = [ ]
for n= 1 to number of samples N :
ei ∼ G(µi, σi)
rj ∼ G(Ωj, ρj)
ek ∼ G(µk, σk)
hi,j,k ← [ei, rj, ek]
xni,j,k ∼ Bern(Θ(score(hi,j,k))).
xall.append(xni,j,k)
end for
confidence =

∑
xall
N

Score = score(µi,Ωj, µk)
Evaluate Score rank if confidence ≥ 1 - coverage
end for

8.4.2 Confidence Estimation via Output Variance

Then we propose a confidence estimation method that relies on measuring

the variance in the output predictions. We effectively measure the decision

predictions sensitivity from multiple predictions. We begin with 400 test (full

test set) examples evaluated at test time when the coverage is one, reducing

to zero examples evaluated when the coverage is zero. Specifically, we notice

that the precision only changes once we reach coverage of around 0.5 and is at

its maximum when the coverage is reduced to 0.4, and we received the results

shown in Fig 8.2.

The same results across both experiments are likely due to small variance around

predictions, as observed in earlier experiments on forward sampling vs mean

approximation. However, we believe it is still useful to highlight this method,

as it could be applicable for future variational knowledge graphs, whereby the

embedding uncertainty is more significant than this example.

Based on Fig 8.2, we can see a general trend of increased accuracy with a

decrease in coverage, exactly what we would desire from a model to estimate its

confidence in a prediction. We also provide the relationship between the number

of test examples evaluated at test time and the coverage, as well as mean rank.

We expect a similar story across other score functions and other datasets, due

to similar performances across scoring functions in Chapter 7. However, this

conjecture is inconclusive.
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Figure 8.2: Precision - Coverage Relationship

8.5 Training

We will now explore the training process in further detail for the training graph

of the Model A that was used in Section 8.3. It is no surprise that we observe an

extremely training noisy process, as the training process is based off sampling.

Fig 8.4 displays the negative log-likelihood across the positive facts over 20

epochs and 100 mini-batches.

Figure 8.3: Positive Fact Negative Log Likelihood

We are also able to visualise the distribution of weights learnt in the variance

embeddings. It is satisfying to see that although the variance values are initialised

to a constant, the system quickly alters and discovers a range of variance

embeddings suitable for the task.

The histogram of learned standard deviation values for the predicate embeddings

is of a similar trend to Fig 8.4, hence we choose not to include it.
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Figure 8.4: Smoothed Histogram of Entity Std Deviation Values

8.6 Mini-batch Kullback—Leibler Divergence

Weight

We now investigate the coefficient values of the created compression cost function

over batch sizes of; 5, 10, 50, and 100. We display both the KL coefficient due

to the compression cost, as well as the cumulative sum of all previous KL

coefficients.

Figure 8.5: Compression Cost Analysis

Figure 8.5 shows that the compression cost behaves similarly across most of the

batches. The behaviour begins with a substantial penalty followed by a sharp

decline. However, it might be desirable to produce a dampened compression cost

with an approximate exponential decrease at the beginning and an approximately

exponential increase at the end of the batch: to spread information more

smoothly, shown in Figure 8.6.

After analysis of the effect of the altered compression cost, we see the changes

cause negligible impact in the training process. Thus we retain the original

compression cost.



Chapter 8. Analysis 76

Figure 8.6: Modified Compression Cost

8.7 Visual Embedding Analysis

We first assess the relationship between the frequency of a node or connection

within a knowledge graph, with its learnt latent representation. Second, we

discuss a 2D toy experiment used during the experimental phases to visualise

and perform an extrinsic evaluation on the learnt representation.

8.7.1 Variance Magnitude to Frequency Relationship

We would like to verify whether the isotropic co-variance matrices we learn are

capturing information regarding the ’popularity’ or frequency of a given node.

We first compute the frequency of each node by doing a count across the training

set whenever we see the node mentioned as either a subject or object, similarly

for the relation types.

Figure 8.7: Diagonal Co-variance Sum vs. Log Frequency

Figure 8.7 and Table 8.3 show a weak correlation between the total weight

(vector sum) of variance embedding and frequency. There is a gradual decrease

in variance values as objects are seen more frequently in training, which shows

how the model reduces its uncertainty over an object the more it is used: a

desirable property.
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Frequency Entity Sum Variance

249 netherlands 1
215 uk 1
146 burma 1
313 poland 1
243 ussr 0.999382
146 indonesia 0.99864
462 israel 0.998606
302 usa 0.998076
260 jordan 0.997578
287 india 0.997461
514 cuba 0.996625
232 china 0.995591
284 brazil 0.994613
331 egypt 0.992509

Table 8.3: Nations: Entity Variance Analysis

We now visualise the embeddings learnt from the previously used, and best

performing model, Model A using Bernoulli sampling to estimate the ELBO

with the compression cost and linear warm-up. We use the nations dataset,

which we believe is the most trivial to interpret, lastly paired with DistMult

score function.

8.7.2 2D Toy Experiment

From the preliminary 2D toy experiments (without constraining variance embed-

dings to unit variance) we discovered an explosion in the variance embedding

values, with no constraint on their allowed values. However, we also observed

that the mean embedding vectors behaved sensibly. Thus, there was no need to

consider a constraint. This motivated the creation of the unit norm variance

projection scheme. After some consideration, this comes as less of a surprise. For

the nations dataset, we have only 25 relations and 1,992 positive triples, so the

predicates obtain a more significant number of updates than the entities receive.

We place images of these bloated embeddings in the appendix as additional

information. We also observed from this experiment that the model could put

three distributions on top of each other when they exhibit a fact, displaying the

first sign that the system was learning correctly.
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8.7.3 Model A Extrinsic Evaluation: Embedding Analy-

sis

Finally, we chose to select the model which had the highest performance (Model

A with Bernoulli sampling to estimate the ELBO, compression cost and linear

warm-up) and then visualise the learned embeddings on the nations dataset.

We take the first two dimensions of the embedding vector for each subject,

object, and predicate. We also include a randomly sampled (corrupted) entity

for comparison.

Figure 8.8: Two Visualisation Schemes For Embeddings. (Left)
First two dimensions of each distributions embedding and (right)

projected distribution using PPCA & NNMF

We encountered the problematic question during this stage of how to visualise



Chapter 8. Analysis 79

multiple high dimensional Gaussian distributions: We use two methods to acquire

the parameters for a bi-variate distribution, which we can then easily plot. First,

we arbitrarily select the parameters for two dimensions from each subject, object

and predicate embeddings. Secondly, we project the high dimensional mean

embedding vectors to two dimensions using Probabilistic Principal Component

Analysis (PPCA) [Tipping and Bishop, 1999] to project the variance embedding

vectors down to two dimensions using Non-negative Matrix Factorisation (NNMF)

[Févotte and Idier, 2011].

Once we have the parameters for a bivariate normal distribution, we then sample

from the bivariate normal distribution 1,000 times and then plot a bi-variate

kernel density estimate of these samples. By visualising these two-dimensional

samples, we can conceive the space in which the entity or relation occupies. We

complete this process for the subject, object, relation, and a randomly sampled

corrupted entity (under LCWA) to produce a visualisation of a fact, as shown

in Figure 8.8.

The second visualisation scheme (Figure 8.9) of plotting samples from projecting

the distribution parameters using PPCA & NNMF appears considerably more

informative than the scheme of plotting samples from the first two dimensions.

Figure 8.9 displays three true positives from test time predictions.

Figure 8.9 shows that the variational framework can learn high dimensional

representations which when projected onto lower (more interpretable) dimensions.

Figure 8.9 displays a clustering of the subject, object and predicate that create

a positive (true) fact. We also observe a separation between the items which

generate a fact and a randomly sampled (corrupted) entity which is likely

to create a negative (false) fact. The first test fact ”(USA, Commonbloc0,

Netherlands)” shows clear irrationality similarity between all objects in the

tested fact, i.e. the vectors are pointing towards a south-east direction. We can

also see that the corrupted entity Jordan is quite a distance away from the items

in the tested fact, which is good as Jordan does not share a common bloc either

USA or Netherlands.

In the second test fact ”(China, Embassy, Egypt)”, of Figure 8.9, we can see

the embeddings for China and Egypt are close together, indicating they share

many relations together. We observe the predicate embedding for embassy is

as separated from the subject and object embedding as the randomly sam-

pled entity embedding Brazil. This would suggest that the scores acquired from

”(China,Embassy,Egypt)”, ”(Egypt,Embassy,China)”, ”(Brazil,Embassy,China)”

,”(Brazil,Embassy,Egypt)”,”(China,Embassy,Brazil)” and ”(Egypt,Embassy,Brazil)”
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to be similarly high. From a simple investigation online 1 it is clear that all of

these nations have at least one embassy in each of the other nations, so this

visualisation is correctly extrapolating further truths around the similarities

between these nations.

1https://www.embassypages.com/

https://www.embassypages.com/
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Figure 8.9: True Positives
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8.8 Comparison to State-of-the-art

We now compare our model to the previous state-of-the-art multi-relational

generative model TransG [Xiao, Huang, and Zhu, 2016], as well as to a previously

published probabilistic embedding method KG2E [He et al., 2015] on the WN18

dataset. Unfortunately, we had to use the WN18 dataset for comparison as

this was the only common dataset all three had been evaluated on, whereas we

would have preferred to evaluate them based on the more challenging datasets

WN18RR and FB15K-237.

Dataset Model
Mean Rank Raw Hits@ Filtered Hits @

Raw Filter 10 1 3 10

WN18

KG2E He et al., 2015 362 345 0.805 - - 0.932
TransG Xiao, Huang, and Zhu, 2016 345 357 0.845 - - 0.949
Variational ComplEx (Model A) 753 765 83.58 0.934 0.945 0.952
Variational ComplEx (Model B) 899 914 80.1 0.901 0.936 0.940

Table 8.4: Probabilistic Models

Table 8.4 makes clear the improvements in the performance of the previous

state-of-the-art generative multi-relational knowledge graph model. Model A has

marginally worse performance than the state-of-the-art model on raw Hits@10.

We conjecture two reasons may cause this discrepancy. Firstly, the fact the

authors of TransG use negative samples provided only (True negative examples),

whereas we generated our negative samples using the LCWA. Secondly, we only

use one negative sample per positive to estimate the Evidence Lower Bound using

Bernoulli sampling, whereas it is likely they used significantly more negative

samples. This conjecture was proved true in a follow-up experiment on Nations;

increasing performance on raw Hits@10 when using 20 negative samples, with

no change in filtered Hits@10.

8.9 Ablation Study

We begin the ablation study over the small and straightforward dataset Nations,

in Section 8.9.1. Lastly, we explore the same model and parameters over one of

the most challenging datasets, WN18RR, in Section 8.9.2.

The ablation study was conducted on Model A with; DistMult, KL Compression

Cost, linear warm-up, Bernoulli sampling to estimate the ELBO, unit variance

sum constraint, Xavier initialisation for the mean embeddings, and constant

initialisation for the variance embeddings. We replace each component separately

with a trivial alternative to attempt at quantifying overall contribution.



Chapter 8. Analysis 83

Full Model KL Compression Cost Linear Warmup Bernoulli Sampling Unit Variance Init Xavier Mean Init Constrained Variance

Hits@10 0.995 0.995 0.995 0.983 0.993 0.985 0.995

Table 8.5: Nations Ablation Study Best Validation Hits@10

1. KL Compression Cost is replaced with linear 1
Number of Batchs

.

2. linear warm-up on the KL Compression Cost is replaced with only the KL

Compression Cost term.

3. Bernoulli sampling to estimate the ELBO (using one negative sample) is

replaced with negative sampling — again using one negative sample.

4. Variance embedding sum constraint in removed.

5. Xavier initialisation on the mean embeddings is replaced with random

uniform initialisation between -0.001 and 0.001.

6. Constant variance initialisation of 1
embedding size

is replaced with random

uniform initialisation between zero and 1
embedding size

.

8.9.1 Small Dataset

Figure 8.10 displays the results of the ablation study on the small dataset,

Nations. We run this study over 100 epochs, evaluating every ten epochs on

a validation set. We set all random seeds to zero on tensorflow and numpy to

enable a fairer comparison between model components to alleviate additional

randomness factors.

Figure 8.10: Nations Ablation Study Hits@m
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Figure 8.10 displays the ablation results for small datasets. The most significant

component is the mean embedding initialisation scheme. From using Xavier

to random uniform, we have the largest damping of performance. Bernoulli

sampling for ELBO estimation seems to be the second most significant component

of this model, allowing the model to reach a higher accuracy. The negative

impact of NS comes at a surprise, as typically negative sampling is used in

knowledge graph construction.

Table 8.5 shows that all of the components seem to improve convergence collec-

tively. The ablation study also shows not using Xavier Mean initialisation and

using an initialisation between -0.001 and 0.001 seem to work marginally better

with the correct model. We have low confidence claim due to only a single seed

being used to support the claim, as well as the minuscule difference in results

the claim is based off. Overall, it seems most the additional components aid

the learning process in the early stages. However, it results in similar peaks of

performance further down the training schedule.

8.9.2 Large Dataset

We then perform an ablation study in Figure 8.11 over 350 epochs, evaluating a

validation set every five epochs on WN18RR. Similarly, we set all random seeds

equal to zero on tensorflow and numpy to make a fairer comparison between

model components without an additional randomness factor included.

Figure 8.11: WN18RR Ablation Study Hits@m
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Full Model KL Compression Cost Linear Warmup Bernoulli Sampling Unit Variance Init Xavier Mean Init Constrained Variance

Hits@10 0.438 0.440 0.440 0.425 0.432 0.424 0.440

Table 8.6: WN18RR Ablation Study Best Validation Hits@10

Table 8.6 similarly shows for this dataset, all of the components collectively

improve convergence. However, using the linear KL weight, un-constraining the

variance and not using linear warm-up all lead to marginally better results than

achieved with the current model, with a longer convergence rate. In contrast,

Bernoulli Sampling to estimate the ELBO, using Xavier initialisation and unit

variance initialisation all negatively impact the model’s performance when taken

out.
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Chapter 9

Conclusion & Further Work

9.1 Conclusion

Overall we have provided a significant contribution to the field by unifying deep

learning, graphical models, and knowledge graphs through the development of

Model A and Model B. Returning to the thesis goals 1.2, we will discuss the

progression we have made towards each primary goal.

• Firstly, can we propose an alternative neural approach to Knowledge Graph

representation and link prediction that allows us to identify better and

measure predictive uncertainty?

We have successfully created a framework allowing a model to learn embeddings

of any prior distribution that permits a re-parametrisation trick Section 2.5 via

any score function. We have shown, from preliminary experiments, that these

display competitive results with current models. We have yet to discover a novel

method for measuring predictive uncertainty within these systems. We trialled

an approach which attempts at measuring predictive uncertainty in Section 8.4,

which we hope will develop further theories as to measuring predictive uncertainty

in generative knowledge graph models. Overall, we believe this work will enable

knowledge graph researchers to work towards this goal with a new suite of tools.

We would encourage further work on (1) investigating the use of sampling during

training, as currently done, to learn the distribution parameters and then at test

time evaluating the use of probability density functions over the learnt relation

parameters to use as a score: or (2) for confidence estimation.

• Secondly, can we incorporate literature within stochastic variational infer-

ence to scale these robust representations to work on large graph structures?
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This second primary goal has been achieved. In doing so, we have provided

an alternative justification to the Stochastic Variational Inference Evidence

Lower Bound estimator under the Bernoulli sampling framework, then shown

its effectiveness in graph structure learning.

• Lastly, can we better address the challenge of entities and relations that

require multiple representations

By using a generative model for the embeddings, we can address this problem.

It is inconclusive if the proposed models have utilised this, so can be left for

further work (3). Similarly for the secondary research questions:

• What can we learn from analysing the variances?

We observed a slight negative correlation between variance size and frequency—–

however, this was with almost no statistical significance. Thus, the uncertainty

analysis remains an open question and one we would encourage for further work

(4).

• What are the trade-offs for representing Knowledge Bases under this

alternative framework?

The current method leads to a constant increase in the parameters learnt, which

leads to a minor increase in training and inference due to the simplicity of the

overall architecture.

9.2 Further Work

Continuing from the above, we present a further four ideas for future investiga-

tion:

5. Recent advances in variational auto-encoders permit the use of the Von

Mises-Fisher distribution under a novel re-parameterisation trick [Davidson

et al., 2018]. This distribution places a directional hyperspherical prior

on the latent variables, which proved beneficial during experiments on

knowledge graphs in [Davidson et al., 2018]. The bidirectionally of the

distribution seems more natural for modelling a directed graph, especially

when using a scoring function that takes into consideration the similarity

between vectors, as shown in Fig 9.1 from Straub, 20171.

1http://people.csail.mit.edu/jstraub/download/straub2017vonMisesFisherInference.pdf

http://people.csail.mit.edu/jstraub/download/straub2017vonMisesFisherInference.pdf
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Figure 9.1: Depiction of 2D von-Mises-Fisher distributions with
increasing concentration τ . As τ −→ inf the von-Mises-Fisher
distribution approaches a delta function on the sphere at its

mode µ

6. Motivated by the authors of [Bražinskas, Havrylov, and Titov, 2017], who

highlighted the weaknesses of using point estimates of distributions, as

shown in the Fig 9.2, from their article. Where both distributions q have

the same mean, however, one has a much larger variance, undesired when

trying to grasp control of the uncertainties in knowledge graphs. We do not

expect our model to suffer as dramatically as in Fig 9.2, as we sample our

point estimates before computing the score. However, the score we acquire

at test time even through forward sampling does not seem to differ much

compared with the mean embeddings, thus using the learnt uncertainty to

impact the results positively is a fruitful path.

Figure 9.2: Shaded cone is a fixed angle, and ellipses are
approximate posterior Gaussian distributions. The corner of the

cone is at the origin.

7. We propose some alternative similarity functions in the Appendix A, how-

ever in their current form these distributional knowledge graph similarity

functions can not be trained using optimisation methods.

8. It would also be interesting to investigate the use of multiple samples

during training, to see the effect of this on the learnt embeddings.

9. It would be interesting investigating other forms of encoding functions,

such as a multi-layer perceptron (MLP) on each input of one hot encoded

entity/predicate vectors, or a graph convolution network.
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10. Lastly, it would be interesting applying latent regularisation techniques,

Section 2.6, to the predicate mean embeddings.

9.3 Critique

We have three main critiques from this thesis;

1. Although the metrics reported from Model A are a significant improvement

compared to existing generative models, they remain slightly lower than

the metrics obtained from the scoring functions ComplEx and DistMult

etc. With a sufficient parameter sweep Model A should at least be on par

with ComplEx and DistMult’s recently published results.

2. We realised during intermediate stages of the experimental section that

TransE did not theoretically permit maximum likelihood estimation of its

parameters, as TransE’s scoring function values are strictly negatives so

computing Θ(score) ≤ 0.5. However, in some cases, Variational TransE

seemed to produce reasonable results. It was inconclusive as to why this

worked and can be left for further investigation.

3. There is an argument against using mean rank to compare performance

across datasets, and instead use mean reciprocal rank which uses the mean

rank relative to the total number of entities available to rank. We would

have preferred to use this metric, however, had already conducted many

experiments before this was seen an issue.
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Similarity Functions

We now propose scoring functions which measure the similarity between three

distributions of subject, object and predicate.

Product

Theorem 1. For the special case of two Gaussian probability densities

x1(t) = 1√
2πσ2

1

e
− (t−µ1)

2

2σ21

x2(t) = 1√
2πσ2

2

e
− (t−µ2)

2

2σ22

The product density has mean and variance given by

µ =

µ1
2σ2

1
+ µ2

2σ2
2

1
2σ2

1
+ 1

2σ2
2

=
µ1σ

2
2 + µ2σ

2
1

σ2
2 + σ2

1

σ2 = σ2
1

∥∥σ2
2 =

1
1
σ2
1

+ 1
σ2
2

=
σ2

1σ
2
2

σ2
1 + σ2

2

.

Proof

See Smith, 2018. 1.

Therefore the probability density function remains Gaussian, an extremely useful

result.

1https://ccrma.stanford.edu/ jos/sasp/Product Two Gaussian PDFs.html

https://ccrma.stanford.edu/~jos/sasp/Product_Two_Gaussian_PDFs.html
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GaussMult

Thus we define a new score function gθ2 , which is based on the first moment of

the inner product of three Gaussian distributions.

gθ2(N1,N2,N3) = E[< N (x;µ1, σ1)N (x;µ2, σ2)N(x;µ3, σ3) >]

= E[
D∑
d=1

N (x;µ1, σ1)N (x;µ2, σ2)N(x;µ3, σ3)]

=
D∑
d=1

∫ ∞
−∞

xN (x; (
x;µ1σ

2
2 + µ2σ

2
1

σ2
2 + σ2

1

), (
σ2

1σ
2
2

σ2
1 + σ2

2

))N(x;µ3, σ3)dx

=
D∑
d=1

∫ ∞
−∞

xN (x; (
µprodσ3 + µ3σprod

σ3 + σprod
), (

σprodσ3

σprod + σ3

))dx

=
D∑
d=1

µprod,kσ3,k + µ3,kσprod,k
σ3,k + σk,prod

(A.1)

where K is the latent dimension size

σprod = (
σ2
1σ

2
2

σ2
1+σ2

2
)

µprod = (
µ1σ2

2+µ2σ2
1

σ2
2+σ2

1
)

(A.2)

Then taking the sigmoid in order to estimate the likelihood gives

fθ2(gθ2) =
1

1 + e−gθ2

pθ(xs,r,o = 1) = fθ2

(A.3)

Note, it is clear that Eq A.3 approximated through the DistMUlt of Gaussian

samples seen previously Eq 6.3, as shown in Eq A.4.

pθ(xs,r,o = 1) = fθ2 ≈
1

1 + e−<es,ep,eo>
= fθ (A.4)
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GaussXE

First, given three distributions Ns,Np,No. We first compute the probability

density distribution of the product of subject and object embeddings.

Nmult = Ns · No = N (µs, σs) · N (µo, σo) = N (
µsσ

2
o + µoσ

2
s

σ2
o + σ2

s

,
σ2
sσ

2
o

σ2
s + σ2

o

) (A.5)

Then calculating the probability density of the first moment of the difference

distribution, over the predicate distribution.

pθ(xs,r,o = 1) = fθ3(Ns,Np,No) = N (E[Nmult];µp, σp)

= N (
µsσ

2
o + µoσ

2
s

σ2
o + σ2

s

;µp, σp)
(A.6)

GaussE

Given three distributions Ns,Np,No, we first compute the distribution of the

difference of subject and object embeddings.

Ndifference = Ns −No = N (µs, σs)−N (µo, σo) = N (µs − µo, σ2
s + σ2

o) (A.7)

Then calculating the probability density of the first moment of the difference

distribution, over the predicate distribution.

pθ(xs,r,o = 1) = fθ4(Ns,Np,No) = N (E[Ndifference];µp, σp)

= N (µs − µo;µp, σp)
(A.8)

Inner Product

We notice firstly, that the inner product for two discrete functions f(x) & q(x),

is equivalent the dot product

∫
x∈Rn

f(x)q(x) =
D∑
d=1

fd(xd)qd(xd) =< f(x), q(x) > (A.9)
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This suggests that the inner product may be a more natural expression of

similarity than the product operation between Gaussian probability density

functions, as previously defined.

Hence using the below theorem we can derive additional scoring functions.

Theorem 2. For the special case of the inner product of two Gaussians, we

obtain the expected likelihood kernel

K(Pi, Pj) =

∫
x∈Rn

N (x;µi,Σi)N (x;µj,Σj)dx = N (0;µi − µj,Σi + Σj)

Proof

See Jebara, Kondor, and Howard, 2004 .

InnerGaussE

Following the inspiration from TransE, we propose another novel score function.

Given three distributions Ns,Np,No, we first compute the distribution of the

difference of subject and object embeddings.

Ndifference = No −Ns = N (µo, σo)−N (µs, σs) = N (µo − µs, σ2
o + σ2

s) (A.10)

pθ(xs,r,o = 1) = fθ5(Ns,Np,No) = K(N (µp, σp),Ndifference)

= N (0;µp + µs − µo, σ2
p + σ2

o + σ2
s)

(A.11)
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Appendix B

Implementation Details

We will briefly discuss the various methods we used for sampling via the re-

parametrisation trick.

Sampling

For each input in the knowledge graph triple z ∈ (O,P, S), we first perform

a embedding look up into our second moment representation, producing the

required vectors of parameters for the latent variables

µi, τi = log(exp(σi)− 1)

Ωj, τj = log(exp(ρj)− 1)

µk, τk = log(exp(σk)− 1)

(B.1)

with the σ = log(1 + exp(τ)) representation [Blundell et al., 2015] enforcing σ to

remain positive. Or the triple with the typical σ = sqrt(exp(τ)) representation

[Kingma and Welling, 2013].

µi, τi = log(σ2
i )

Ωj, τj = log(ρ2
j)

µk, τk = log(σ2
k)

(B.2)

The reason we do not represent our variance directly, is to enforce our variance

values to remain positive during gradient descent updates. We then sample as

previously stated,
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ei ∼ N (µi, σ
2
i )

rj ∼ N (Ωj, ρ
2
j)

ek ∼ N (µk, σ
2
k)

(B.3)

However, we do this by utilising the re-parametrisation trick,

êi ∼ µi + ε̂i · σi
r̂j ∼ Ωj + ε̂j · ρj
êk ∼ µk + ε̂k · σk

(B.4)

Where

ε̂i ∼ N (0, I)

ε̂j ∼ N (0, I)

ε̂k ∼ N (0, I)

(B.5)

B.0.1 Optimisation Problem

As LA & LB are compositional we can choose to either optimise it all in one go,

or to optimise the g and e objective separately. This performed poorly in practise,

so we chose to jointly optimise the ELBO. It is typical to constrain maximum

variance values to unit variance, which produces the below optimisation problem

min
µ1...||E|| τ1...||E|| Ω1...||P || ρ1...||P ||

−L : ||ρ||2 ≤ 1 ||σ||2 ≤ 1 (B.6)

B.0.2 Computing Variable Gradients

With gradients computed as normal at all nodes apart from the variation pa-

rameters which are calculated using the Stochastic Variational Bayes Estimator.
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∂L̂
∂µi
≈ ∂L̂
∂θ

∂L̂
∂τi
≈ ε̂ · ∂L̂

∂θ

∂L̂
∂Ωj

≈ ∂L̂
∂θ

∂L̂
∂τj
≈ ε̂ · ∂L̂

∂θ

∂L̂
∂µk
≈ ∂L̂
∂θ

∂L̂
∂τk
≈ ε̂ · ∂L̂

∂θ

(B.7)
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Bražinskas, A., S. Havrylov, and I. Titov (2017). “Embedding Words as Dis-

tributions with a Bayesian Skip-gram Model”. In: ArXiv e-prints. arXiv:

1711.11027 [cs.CL].

Burda, Yuri, Roger B. Grosse, and Ruslan Salakhutdinov (2015). “Importance

Weighted Autoencoders”. In: CoRR abs/1509.00519. arXiv: 1509.00519. url:

http://arxiv.org/abs/1509.00519.

Challis, Edward and David Barber (2013). “Gaussian Kullback-Leibler Approxi-

mate Inference”. In: Journal of Machine Learning Research 14, pp. 2239–2286.

url: http://jmlr.org/papers/v14/challis13a.html.

Chen, Wenhu et al. (2018). “Variational Knowledge Graph Reasoning”. In:

NAACL-HLT.

Culotta, Aron and Andrew McCallum (2004). “Confidence Estimation for In-

formation Extraction”. In: Proceedings of HLT-NAACL 2004: Short Papers.

HLT-NAACL-Short ’04. Boston, Massachusetts: Association for Computa-

tional Linguistics, pp. 109–112. isbn: 1-932432-24-8. url: http://dl.acm.

org/citation.cfm?id=1613984.1614012.

Dai, Zhenwen et al. (2015). “Variational auto-encoded deep Gaussian processes”.

In: arXiv preprint arXiv:1511.06455.

Damianou, Andreas and Neil Lawrence (2013). “Deep gaussian processes”. In:

Artificial Intelligence and Statistics, pp. 207–215.

Davidson, T. R. et al. (2018). “Hyperspherical Variational Auto-Encoders”. In:

ArXiv e-prints. arXiv: 1804.00891 [stat.ML].

Davis, Randall, Howard E. Shrobe, and Peter Szolovits (1993). “What Is a

Knowledge Representation?” In: AI Magazine 14.1, pp. 17–33. url: http:

//citeseer.ist.psu.edu/davis93what.html.
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